1.1 The Geometry of Numbers and Lagrange’s Four-Squares Theorem

In this section, we discuss several results from the geometry of numbers. The underlying idea is (obviously enough) to use geometric ideas to study number theory.

- We have already encountered some of these ideas when discussing the Gaussian integers: they form a lattice inside the complex plane.

First, we recall some terminology:

- A set B in \mathbb{R}^n is convex if, for any x and y in B, all points on the line segment joining x and y are also in B.
- A set B in \mathbb{R}^n is symmetric about the origin if, for any x in B, the point $-x$ is also in B.
- We denote the set of all points in \mathbb{R}^n all of whose coordinates are integers by \mathbb{Z}^n.

Our starting point is the following theorem, which says that if a convex set is sufficiently nice and large enough, it must contain an integer point.

Theorem (Minkowski’s Convex Body Theorem): Let B be a convex open set in \mathbb{R}^n that is symmetric about the origin and whose volume is $> 2^n$. Then B contains a nonzero point all of whose coordinates are integers.

- We first show the following (sometimes called Blichfeldt’s principle): if S is a bounded set in \mathbb{R}^n whose volume is greater than 1, then there exist two points x and y in S such that $x - y$ has integer coordinates.

 * **Proof**: The idea is essentially to use the pigeonhole principle.
 * For each lattice point $a = (a_1, \cdots, a_n)$, let $R(a)$ be the “box” consisting of the points (x_1, \cdots, x_n) whose coordinates satisfy $a_i \leq x_i < a_{i+1}$.
 * If we then set $S(a) = S \cap R(a)$, we have $\sum_{a \in \mathbb{Z}^n} \text{vol}(S(a)) = \text{vol}(S)$, because each point of S lies in exactly one of the boxes $R(a)$.
 * Now imagine translating the set $S(a)$ by the vector $-a$: it will preserve volume, but move $S(a)$ to land inside $S(0)$. Denote this translated set by $S^*(a)$.
 * Then $\sum_{a \in \mathbb{Z}^n} \text{vol}(S^*(a)) = \text{vol}(S) > 1$.
 * Now notice that each of the sets $S^*(a)$ lies inside $S(0)$, which has volume 1, so there must be some overlap.
 * Hence, there exists some distinct $x, y \in S$ and $a_1, a_2 \in \mathbb{Z}^n$ such that $x - a_1 = y - a_2$: but then $x - y = a_1 - a_2$ is a nonzero lattice point.

- **Proof** (of Minkowski’s Theorem): Suppose B is a convex open set symmetric about 0 whose volume is $> 2^n$, and let $\frac{1}{2}B = \left\{ \frac{1}{2}x : x \in B \right\}$.

 * Notice that since $\text{vol}(B) > 2^n$, we have $\text{vol}(\frac{1}{2}B) > 1$. Apply Blichfeldt’s principle to $\frac{1}{2}B$: we obtain distinct points $x, y \in \frac{1}{2}B$ such that $x - y$ has integer coordinates.
 * Then $2x \in B$ and $2y \in B$.
 * Since B is symmetric about the origin, $-2y \in B$.

Number Theory (part n): The Geometry of Numbers (by Evan Dummit, 2014, v. 1.00)

Contents

1.1 The Geometry of Numbers and Lagrange’s Four-Squares Theorem 1
* Since B is convex, the midpoint of the line segment joining $2x$ and $-2y$ lies in B.
* But this point is simply $x - y$, which is a nonzero point all of whose coordinates are integers, as desired.

- The result of Minkowski’s theorem does not apply merely to the lattice of points having integer coordinates.
 - If v_1, \ldots, v_n are (\mathbb{R}-)linearly independent vectors in \mathbb{R}^n, the set A of vectors of the form $c_1v_1 + \cdots + c_nv_n$, where each $c_i \in \mathbb{Z}$, is called a lattice.
 - A fundamental domain for this lattice can be obtained by drawing all of the vectors v_1, \ldots, v_n outward from the origin, and then filling them in to create a “skew box”.
 - A basic fact from linear algebra says: the volume of the fundamental domain is equal to the determinant of the matrix whose columns are the vectors v_1, \ldots, v_n (expressed in terms of the standard basis of \mathbb{R}^n).

- **Theorem** (Minkowski’s Theorem for general lattices): Let Λ be any lattice in \mathbb{R}^n whose fundamental domain has volume V. If B is any open convex centrally-symmetric region in \mathbb{R}^n whose volume is $> 2^n \cdot V$, then B contains a nonzero point of Λ.
 - **Proof**: Apply a linear transformation T sending the basis vectors of Λ to the standard basis of \mathbb{R}^n.
 - Linear transformations preserve open sets, convex sets, and central symmetry, so the image of B under this map is still open, convex, and centrally symmetric.
 - The volume of $T(B)$ is equal to $1/V$ times the volume of B (by standard linear algebra), so this new open convex centrally-symmetric set $T(B)$ has volume $> 2^n$.
 - Applying the previous version of Minkowski’s theorem to $T(B)$ yields that $T(B)$ contains a nonzero point all of whose coordinates are integers: then B contains a nonzero point of Λ.

- There are many applications of Minkowski’s theorem in number theory.
 - One very important one, which we do not quite possess the tools to discuss at this stage, is to provide an effective way to determine whether the ring $\mathbb{Z}[\sqrt{D}]$ possesses unique factorization.
 - Instead, we will discuss a simpler application: proving that every positive integer can be written as the sum of four squares.

- **Theorem** (Lagrange): Every positive integer n can be expressed as the sum of four squares of integers.
 - We first show that if a, b are the sum of four squares, then so is ab. We then show every prime is the sum of four squares. By applying these results, we immediately see that every positive integer is the sum of four squares.
 - **Lemma 1**: If a and b are the sum of four squares, then so is ab.
 * **Proof**: This follows from the following magical-seeming identity:
 \[
 (x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2) = (x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4)^2 + (x_1y_2 - x_2y_1 + x_3y_4 - x_4y_3)^2 + (x_1y_3 - x_2y_4 - x_3y_1 + x_4y_2)^2 + (x_1y_4 + x_2y_3 - x_3y_2 - x_4y_1)^2
 \]
 which can be verified (if not understood) simply by multiplying out and verifying that all of the cross-terms cancel.
 * Like the corresponding identity for sums of two squares
 \[
 (a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2
 \]
 which arises from the fact that the norm map on $\mathbb{Z}[i]$ is multiplicative, the four-squares identity does not “come from nowhere”: it in fact arises from a norm map on the ring \mathbb{H} of quaternions, which is a noncommutative ring. (The letter \mathbb{H} is used because the quaternions were first described by Hamilton.)
 - Explicitly, \mathbb{H} is the set of elements of the form $a + bi + cj + dk$, where a, b, c, d are real numbers, subject to the multiplication rules $i^2 = j^2 = k^2 = ijk = -1$. (From these relations one can deduce explicitly that $ij = -ji = k$, $jk = -kj = i$, and $ki = -ik = j$.)
* The “conjugation” map is $a + bi + cj + dk = a - bi - cj - dk$, and the norm map is $N(q) = q\overline{q}$. Explicitly, one can compute that $N(a + bi + cj + dk) = a^2 + b^2 + c^2 + d^2$, and the fact that this map is multiplicative amounts to the four-squares identity.

* In fact, since the norm of a nonzero quaternion is nonzero, we in fact see that every nonzero quaternion has a multiplicative inverse.

* Multiplication in this noncommutative manner using the letters i, j, and k might be familiar from the algebra of the cross product of vectors in 3-space: often the notation $i = (1,0,0)$, $j = (0,1,0)$, $k = (0,0,1)$ is used for the basis vectors, and then for example one has $i \times j = k$.

* Due to their connection with geometry in 3 dimensions, the quaternions are often used in computer graphics, applied physics, and engineering, since they can be used to represent spatial rotations in 3-dimensional space far more efficiently than matrices.

○ **Lemma 2**: Every prime p can be written as the sum of four squares.

* Proof: As shown on a homework assignment, -1 is the sum of two squares modulo p for any prime p; say, $-1 \equiv r^2 + s^2 \pmod{p}$.

 * The argument was: if p is odd, the set S of squares modulo p contains $(p+1)/2$ elements, as does the set T of elements of the form $-1 - s^2$, so they must have a nontrivial intersection.

* Now let Λ be the lattice spanned by the four vectors $(p,0,0,0)$, $(0,p,0,0)$, $(r,s,1,0)$, and $(s,-r,0,1)$. It is a simple computation to see that the determinant of these four vectors is p^2, so the volume of the fundamental domain is p^2.

* Let B be the convex, centrally-symmetric open set in \mathbb{R}^4 defined by $x_1^2 + x_2^2 + x_3^2 + x_4^2 < 2p$. The volume of this ball can be computed (either with cleverness or a brute-force quadruple integration) to be $2\pi^2 p^2$.

* Since the volume of B is larger than 2^4 times the volume of the fundamental domain of Λ (since $2\pi^2 p^2 > 16p^2$), we conclude that there is a nonzero element

$$\langle x_1, x_2, x_3, x_4 \rangle = a \langle p, 0, 0, 0 \rangle + b \langle 0, p, 0, 0 \rangle + c \langle r, s, 1, 0 \rangle + d \langle s, -r, 0, 1 \rangle$$

of Λ in B.

* But then

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = (ap + cr + ds)^2 + (bp + cs - dr)^2 + c^2 + d^2
\equiv (c^2 + d^2)(1 + r^2 + s^2) \pmod{p}
\equiv 0 \pmod{p}$$

and since $\langle x_1, x_2, x_3, x_4 \rangle$ is nonzero and has $x_1^2 + x_2^2 + x_3^2 + x_4^2 < 2p$, the only possibility is that $x_1^2 + x_2^2 + x_3^2 + x_4^2 = p$.

* Thus, p is the sum of four squares, and we are done.