Example: Find the area enclosed by the curve $r = 1$ and $r^2 = 25\theta$.

Solution:

Area of A_1 is given by:

$$A_1 = \frac{1}{2} \int_0^{\pi/12} 25\theta \, d\theta$$

$$= \left[\frac{1}{2} \theta^2 \right]_0^{\pi/12}$$

$$= \frac{1}{2} \left(\frac{\pi^2}{144} \right) = \frac{\pi^2}{288}$$

Area of A_2 is given by:

$$A_2 = \frac{1}{2} \int_{\pi/12}^{\pi/4} 1^2 \, d\theta$$

$$= \left[\frac{\theta}{2} \right]_{\pi/12}^{\pi/4}$$

$$= \frac{\pi}{24}$$

Area is:

$$A = 4 \left(A_1 + A_2 \right)$$

$$= 4 \left(\frac{\pi^2}{288} + \frac{\pi}{24} \right)$$

$$= \frac{\pi^2}{72} + \frac{\pi}{6}$$

$$= 2 - \sqrt{3} + \frac{\pi}{3}$$