Place **ANSWERS ONLY** in the boxes.

1) Given the function \(F(x, y) = -5x^2 + 4xy - y^2 + 16x + 10 \)

 a) Find the stationary (critical) point

 b) Does \(F \) have a **max, min, or saddle point** at the point from part a?

 c) Evaluate \(F(x, y) \) at the point from part a.

2) Find all stationary points \(F(x, y) = 2x^3 - 6xy + 2y^3 - 1 \). In the chart below, list the critical points in the left column, then classify each of them in the middle column, and then find the value of \(F \) at the stationary point (right column). You may not need all of the rows.

<table>
<thead>
<tr>
<th>Stat. Pt.</th>
<th>Max, Min, or Saddle Pt.</th>
<th>(F(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Given \(F(x, y) = 25 - x - 2x^2 - 2y^2 \) over the region \(S = \{(x, y) | x^2 + y^2 \leq 16\} \)

 a) The maximum value is __________ and it occurs at the point __________

 b) The minimum value is __________ and it occurs at the point __________

4) Given \(F(x, y) = x^2y + 3xy - 4y + 15x \) over the region \(S = \{(x, y) | 0 \leq x \leq 3 \text{ and } -4 \leq y \leq 4\} \)

 a) The maximum value is __________ and it occurs at the point __________

 b) The minimum value is __________ and it occurs at the point __________