Area Between Two Curves

If two functions, \(f(x) \) and \(g(x) \) are continuous on the interval \([a, b]\) and \(f(x) \geq g(x) \) on \([a, b]\), then the area between \(f(x) \) and \(g(x) \) from \(x = a \) to \(x = b \) is given by

\[
Area = \int_{a}^{b} [f(x) - g(x)] \, dx
\]

Sometimes, though, it may be easier to switch from functions of \(x \) to functions of \(y \) (with respect to \(y \)), such as below

The area between the curves \(f(y) \) and \(g(y) \) to the left is given by

\[
Area = \int_{a}^{b} [f(y) - g(y)] \, dy
\]

Examples

1) Find the area of the region bounded by the curves \(y = x^2 - 8x + 13 \) and \(y = 6 \).
2) Find the integral(s) required to do example 1 with respect to \(y \).
3) Find the area of the region(s) bounded by \(y = x^3 + 2x^2 - 7x + 5 \) and \(y = 2x^2 - 3x + 5 \)
4) Find the area of the region(s) bounded by \(f(x) = \sin x \) and \(g(x) = \tan x \) from \(x = 0 \) to \(x = \frac{\pi}{4} \)
5) Find the area of the region(s) bounded by \(x = y^2 \) and \(y = x^2 \)
6) Find the area of the region(s) bounded by \(x = y^2 - 2 \) and \(x = |y| \)
7) Use technology to estimate the area between the curves \(y = e^{.5x} \) and \(y = x^2 - 5 \) to 4 decimal places. (Note that there are 2 regions).

Solutions to examples

1) 36 2) \(\int_{-3}^{6} \left(4 + \sqrt{y + 3}\right) - \left(4 - \sqrt{y + 3}\right) \, dy \) 3) 8 4) \(-\ln\left(\frac{\sqrt{2}}{2}\right) + \frac{\sqrt{2}}{2} - 1\) 5) \(\frac{1}{3}\) 6) \(\frac{20}{3}\) 7) 59.0335