Integration – The Substitution Method

Recall the chain rule for derivatives: \[f(g(x))' = f'(g(x)) \cdot g'(x) \]

Given the composite function \(f(g(x)) \), let's refer to \(g(x) \) as the "inside function".

The "U-Substitution" method of integration is basically the reversal of the chain rule.

In an optimal case, where we could be given an integral of the form \(\int c \cdot f(g(x)) \cdot g'(x) \, dx \), the trick is to recognize that we have an "inside function" \(g(x) \), and the composite function \(f(g(x)) \) is also MULTIPLIED by a nonzero constant multiple (c) of \(g'(x) \), at which point we would factor c out of the integral. (Note that c may not be apparent, but may have to be created by multiplying the integrand by a nonzero constant and its reciprocal.)

This being the case, we can perform the substitution \(u = g(x) \).

It follows that \(\frac{du}{dx} = g'(x) \), and so we'll write \(du = g'(x) \, dx \)

(Using an alternative approach, we could solve the equation \(du = g'(x) \, dx \) for \(dx \) and substitute.)

Either way, \(\int c \cdot f(g(x)) \cdot g'(x) \, dx = c \int f(u) \cdot du \)

Examples

Simplest (we have the inside function’s exact derivative)

1) \(\int 2x(x^2 - 7)^9 \, dx \)
2) \(\int \cot x \, dx \)
3) \(\int \frac{1}{x\sqrt{5 + \ln x}} \, dx \)
4) \(\int \sin^5 x \cdot \cos x \, dx \)

A bit tougher (we have a constant multiple of the inside function’s derivative)

5) \(\int_1^2 (2x + 1)^5 \, dx \)
6) \(\int e^x - e^{-x} \, dx \)
7) \(\int_{-2}^2 x(x^2 + 4)^3 \, dx \)

8) \(\int 3e^{2x}\sqrt[3]{4 - 8e^{2x}} \, dx \)

More steps involved (we perform the original substitution, but there are still X’s left)

Here we must use our original substitution \(u = g(x) \) to solve for \(x \) in terms of \(u \).

10) \(\int_0^5 x\sqrt{x + 4} \, dx \)
11) \(\int \frac{x}{\sqrt{1 - x}} \, dx \)
12) \(\int \frac{x}{1 + x^4} \, dx \)
13) \(\int \frac{x^5}{(x^2 + 1)^5} \, dx \)

Solutions to examples

1) \(\frac{1}{10} (x^2 - 7)^{10} + c \)
2) \(\ln |\sin x| + c \)
3) \(2\sqrt{5 + \ln x} + c \)
4) \(\frac{1}{6} \sin^6 x + c \)
5) \(\frac{3724}{3} \)
6) \(\ln(e^x + e^{-x}) + c \)
7) \(0 \) (Note: Odd Function)
8) \(-\frac{9}{64} \left(4 - 8e^{2x}\right)^4 + c\)
9) \(\frac{1}{12} \sec^4(3x) + c\)
10) \(\frac{506}{15}\)
11) \(-2\sqrt{1-x} + \frac{2}{3} \sqrt{1-x}^3 + c\)
12) \(\frac{1}{2} \tan^{-1}(x^2) + c\)
13) \(-\frac{1}{4(x^2 + 1)^2} + \frac{1}{3(x^2 + 1)^3} - \frac{1}{8(x^2 + 1)^3} + c\)