Definitions List

Definition of Supremum: Let $S \subset \mathbb{R}$ be non empty. The *Supremum* of S, α, and written $\alpha = \sup S$ (sometimes denoted $\alpha = \operatorname{lub} S$ for least upper bound), has the following properties.

(i) The element α is an upper bound of S. That is, $x \leq \alpha$ for all $x \in S$.

(ii) The element α is the least upper bound of S. That is, $\alpha \leq M$ for any other upper bound, M, of S.

Definition of Sequence: A *Sequence* is a function whose domain is the natural numbers.

Definition of Sequence Converging: A sequence of real numbers, $\{a_n\}_{n \in \mathbb{N}}$, converges to a real number, a, if and only if, for each $\epsilon > 0$, there exists a natural number N, such that, for all $n \geq N$, $|a_n - a| < \epsilon$. When $\{a_n\}_{n \in \mathbb{N}}$ converges to a we write $\lim_{n \to \infty} a_n = a$ or $a_n \to a$ as $n \to \infty$.

Definition of an Open Set: A subset O of \mathbb{R} is called *open* in \mathbb{R} if and only if, for each point $x \in O$, there is a $r > 0$ such that all points y in \mathbb{R} satisfying $|x - y| < r$ also belong to the set O.

Definition of a Neighborhood...

(a) A subset of \mathbb{R} is called *closed* in \mathbb{R} if its complement is open in \mathbb{R}.

(b) A *neighborhood* of $x \in \mathbb{R}$ is any set containing an open set containing x.

(c) A point $x \in \mathbb{R}$ is called a *boundary point* of a set $S \subset \mathbb{R}$ if every neighborhood of x contains a point in S and a point not in S.

(d) A point $x \in \mathbb{R}$ is called an *interior point* of a set $S \subset \mathbb{R}$ if there exists a neighborhood of x contained in S.

(e) A point $x \in \mathbb{R}$ is called an *exterior point* of a set $S \subset \mathbb{R}$ if there is a neighborhood of x which is entirely contained in complement of S.

Definition of Subsequence: Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence and $\{n_k\}_{k \in \mathbb{N}}$ be any sequence of natural numbers such that $n_1 < n_2 < n_3 < \ldots$. The sequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ is called a *subsequence* of $\{a_n\}_{n \in \mathbb{N}}$.

Definition of Cluster Point: Let $E \subset \mathbb{R}$. A point $a \in \mathbb{R}$ is called a *cluster point* or *accumulation point* of E if and only if every neighborhood of a contains a point in E distinct from a.

Definition of a Cauchy Seq: A sequence $\{x_n\}_{n \in \mathbb{N}}$ is called *Cauchy* (pronounced Co She) if and only if for all $\epsilon > 0$ there exists a $N \in \mathbb{N}$ such that $|x_n - x_m| < \epsilon$ for all $n, m \geq N$.

Definition of a Function: A *function* from D into \mathbb{R}, denoted $f : D \to \mathbb{R}$, is a subset of $D \times \mathbb{R}$ with the property that for each $x \in D$ there is exactly one $y \in \mathbb{R}$ with (x, y) in this subset. We write $f(x) = y$.

Definition of a Continuous Function: Suppose $f : D \to \mathbb{R}$.

(i) A function f is *continuous* at $c \in D$ if and only if, for all $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x \in D$, $|x - c| < \delta$ implies $|f(x) - f(c)| < \epsilon$.

(ii) A function f is called continuous if and only if it is continuous at each point in its domain D.
Definition of Limit of a Function: Let \(f : \mathcal{D} \to \mathbb{R} \) with \(x_0 \) a cluster point of \(\mathcal{D} \). Then \(f \) has a limit \(L \) at \(x_0 \) if and only if, for all \(\epsilon > 0 \), there exists \(\delta > 0 \) such that for all \(x \in \mathcal{D} \), \(0 < |x - x_0| < \delta \) implies \(|f(x) - L| < \epsilon \). We denote the limit \(\lim_{x \to x_0} f(x) = L \).

Definition of IVP: A function, \(f : [a, b] \to \mathbb{R} \), is said to have the intermediate-value property if and only if, given any \(y_0 \) between \(f(a) \) and \(f(b) \), there exists a \(x_0 \in [a, b] \) with \(f(x_0) = y_0 \).

Definition of Uniformly Continuous: A function \(f : \mathcal{D} \to \mathbb{R} \) is uniformly continuous on \(\mathcal{D} \) if and only if, for all \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that for all \(x, a \in \mathcal{D} \), \(|x - a| < \delta \) implies \(|f(x) - f(a)| < \epsilon \).

Definition of the Derivative: Let \(f : \mathcal{D} \to \mathbb{R} \) with \(x_0 \) a cluster point of \(\mathcal{D} \) and \(x_0 \in \mathcal{D} \). We say \(f \) is differentiable at \(x_0 \) if and only if \(\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \) exists, in which case we call the limit \(f'(x_0) \).

Definition of a Partition: Let \([a, b]\) be a closed, bounded interval.

(i) A Partition of \([a, b]\) is a set of points \(P = \{x_0, x_1, x_2, \ldots, x_{n-1}, x_n\} \) with \(a = x_0 < x_1 < \cdots < x_n = b \).

(ii) The norm of a partition is \(||P|| = \max_{1 \leq i \leq n} |x_i - x_{i-1}| \).

(iii) A Refinement of \(P \) is a partition \(Q \) of \([a, b]\) such that \(P \subset Q \). We say \(Q \) is finer than \(P \).

Definition of Upper and Lower Darboux Sums: Let \(f : [a, b] \to \mathbb{R} \) be bounded. Set \(M_j(f) = \sup_{x_{j-1} \leq x \leq x_j} f(x) \) and \(m_j(f) = \inf_{x_{j-1} \leq x \leq x_j} f(x) \).

(a) The upper-Darboux Sum of \(f \) over \(P \) is \(U(P, f) = \sum_{j=1}^{n} M_j(f)(x_j - x_{j-1}) \).

(b) The lower-Darboux Sum of \(f \) over \(P \) is \(L(P, f) = \sum_{j=1}^{n} m_j(f)(x_j - x_{j-1}) \).

Definition of the Darboux Integral: The function \(f : [a, b] \to \mathbb{R} \) is said to be Darboux Integrable on \([a, b]\) if \(f \) is bounded and, for all \(\epsilon > 0 \), there exists a partition, \(P \), of \([a, b]\) such that \(U(P, f) - L(P, f) < \epsilon \). In this case we say \(f \in \mathcal{R}[a, b] \) (the \(\mathcal{R} \) stands for Riemann).

Definition of a Riemann Sum: Let \(P \) be any partition of \([a, b]\) and \(f : [a, b] \to \mathbb{R} \) is bounded. The Riemann Sum with respect to \(P \) is \(S(P, f) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}) \), where \(x_{i-1} \leq t_i \leq x_i \).