Trigonometric Substitution

<table>
<thead>
<tr>
<th>Expression</th>
<th>Substitution</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{a^2 - x^2}$</td>
<td>$x = a \sin \theta$</td>
<td>$1 - \sin^2 \theta = \cos^2 \theta$</td>
</tr>
<tr>
<td>$\sqrt{a^2 + x^2}$</td>
<td>$x = a \tan \theta$</td>
<td>$1 + \tan^2 \theta = \sec^2 \theta$</td>
</tr>
<tr>
<td>$\sqrt{x^2 - a^2}$</td>
<td>$x = a \sec \theta$</td>
<td>$\sec^2 \theta - 1 = \tan^2 \theta$</td>
</tr>
</tbody>
</table>

Example 1: Evaluate $\int \frac{\sqrt{9 - x^2}}{x^2} \, dx$.

SOLUTION: Let $x = 3 \sin \theta$, where $-\pi/2 \leq \theta \leq \pi/2$. Then $dx = 3 \cos \theta \, d\theta$ and $\sqrt{9 - x^2} = \sqrt{9 - 9\sin^2 \theta} = \sqrt{9\cos^2 \theta} = 3|\cos \theta| = 3 \cos \theta$. (Note $\cos \theta \geq 0$ because $-\pi/2 \leq \theta \leq \pi/2$.) Thus,

$$
\int \frac{\sqrt{9 - x^2}}{x^2} \, dx = \int \frac{3 \cos \theta}{9 \sin^2 \theta} \cdot 3 \cos \theta \, dx \\
= \int \frac{\cos^2 \theta}{\sin^2 \theta} \, dx \\
= \int \cot^2 \theta \, dx \\
= \int (\csc^2 \theta - 1) \, dx \\
= -\csc \theta - \theta + C.
$$

Since this is an indefinite integral, we must return to the original variable x. This can be done either by trigonometric identities to express $\cot \theta$ in terms of $\sin \theta = x/3$ or by drawing a diagram with θ interpreted as an angle of a right triangle. Since $\sin \theta = x/3$, we label the opposite side and the hypotenuse as having lengths x and 3. Then the Pythagorean Theorem gives the length of the adjacent side as $\sqrt{9 - x^2}$, so we can simply read the value of $\cot \theta$ from the triangle, and

$$
\cot \theta = \frac{\sqrt{9 - x^2}}{x}.
$$

Since $\sin \theta = x/3$, we have $\theta = \sin^{-1}(x/3)$, and so

$$
\int \frac{\sqrt{9 - x^2}}{x^2} \, dx = -\frac{\sqrt{9 - x^2}}{x} - \sin^{-1}\left(\frac{x}{3}\right) + C.
$$
Example 2: Find the area enclosed by the circle

\[x^2 + y^2 = a^2 \]

SOLUTION: Solving the equation of the circle for \(y \), we get

\[y^2 = a^2 - x^2 \text{ or } y = \pm \sqrt{a^2 - x^2}. \]

Because the circle is symmetric with respect to both axes, the total area \(A \) is four times the area in the first quadrant. The part of the circle in the first quadrant is given by the function

\[y = \sqrt{a^2 - x^2}, \quad 0 \leq x \leq a, \]

and so

\[\frac{1}{4} A = \int_0^a \sqrt{a^2 - x^2} \, dx. \]

To evaluate this integral we substitute \(x = \sin \theta \). Then \(dx = a \cos \theta \, d\theta \). No we change the limits of integration. We have \(x = 0 \), \(\sin \theta = 0 \), and so \(\theta = 0 \); when \(x = a \), \(\sin \theta = 1 \), so \(\theta = \pi/2 \). Also

\[\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 \cos^2 \theta} = a |\cos \theta| = a \cos \theta \]

since \(0 \leq \theta \leq \pi/2 \). Therefore

\[A = 4 \int_0^a \sqrt{a^2 - x^2} \, dx = 4 \int_0^{\pi/2} a \cos \theta \cdot a \cos \theta \, d\theta \]
\[= 4a^2 \int_0^{\pi/2} \cos^2 \theta \, d\theta \]
\[= 4a^2 \int_0^{\pi/2} \frac{1}{2} (1 + \cos 2\theta) \, d\theta \]
\[= 2a^2 \left[\theta + \frac{1}{2} \sin 2\theta \right]_0^{\pi/2} = 2a^2 \left[\frac{\pi}{2} + 0 - 0 \right] \]
\[= \pi a^2. \]

We have shown that the area of a circle is \(\pi a^2 \).

Example 3: Evaluate \(\int \frac{1}{\sqrt{x^2 - a^2}} \, dx \), where \(a > 0 \).

SOLUTION: We let \(x = a \sec \theta \) where \(0 < \theta < \pi/2 \) or \(\pi < \theta < 3\pi/2 \). Then \(dx = a \sec \theta \tan \theta \, d\theta \), and

\[\sqrt{x^2 - a^2} = \sqrt{a^2(\sec^2 \theta - 1)} = \sqrt{a^2 \tan^2 \theta} = a |\tan \theta| = a \tan \theta. \]

Therefore

\[\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \int \frac{a \sec \theta \tan \theta}{a \tan \theta} \, d\theta \]
\[= \int \sec \theta \, d\theta = \ln |\sec \theta + \tan \theta| + C. \]
By drawing a right triangle we find in the same way as before \(\tan \theta = \frac{\sqrt{x^2 - a^2}}{a} \). So we have

\[
\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left| \frac{x}{a} + \frac{\sqrt{x^2 - a^2}}{a} \right| + C
\]

\[
= \ln |x + \sqrt{x^2 - a^2}| - \ln a + C.
\]

Writing \(C_1 = C - \ln a \), we have

\[
\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln |x + \sqrt{x^2 - a^2}| + C_1.
\]

Compute the following integrals using trig substitution.

1. \(\int \frac{1}{x^2\sqrt{x^2 - 9}} \, dx \)
2. \(\int_{2}^{3} \frac{1}{\sqrt{x^3\sqrt{x^2 - 1}}} \, dx \)
3. \(\int \frac{1}{x^2\sqrt{25 - x^2}} \, dx \)
4. \(\int \frac{\sqrt{x^2 - a^2}}{x^4} \, dx \)
5. \(\int \frac{1}{\sqrt{1 + x^2}} \, dx \)
6. \(\int \frac{x^2}{(a^2 - x^2)^{3/2}} \, dx \)