Estimating Transport Coefficients in Re-entrant Factory Models

Ali Kemal Unver

Oct. 25, 2006
Structure of the re-entrant manufacturing system

- **G**: Generator
- **M**: Machine
- **E**: Exit

At the machine M_N, the particles change their attribute from 1 to 2.
Goal

We have the following conservation law:

\[\partial_t \rho + \partial_x [V \rho - D \partial_x \rho] = 0 \]

where

- flux function \(f(x) = V \rho - D \partial_x \rho \),
- \(V \): Velocity coefficient,
- \(D \): Diffusion coefficient,
- \(\rho \): Density of particles \((\rho = \rho(x, t)) \).
Goal (ctd.)

- We will try to find the V and D (velocity and diffusion coefficients of the particles in the production system) from DES (Discrete Event Simulation).
- We will use Chi Simulation-version 0.8
Possibility 1

- $V = V(x)$ and $D = D(x)$

 V and D depend on x.

- Take a part in DES, say at the attribute p, and buffer B_k, where we have the following buffer structure:

 $B_1 M_1 \ldots B_N M_N$
Possibility 1 (ctd.)

Here, $x \in [0,1]$ is the position variable for the production process, formulated as follows:

$$x = \frac{k}{2N} + \frac{(p-1)}{2},$$

where

- k: buffer stage,
- p: attribute of the loop (1 or 2),
- N: total # of buffers.
Possibility 1 (ctd.)

- In general, particle n is in buffer B_k with attribute p at time t_{nk}^p.
- Similarly, particle n is in buffer B_N with attribute 2 at time t_{nN}^2.
- So, $\Delta t = t_{nN}^2 - t_{nk}^p$ is the time that particle n takes from B_k with attribute p, to B_N with attribute 2.
Possibility 1 (ctd.)

- Since \(x = \frac{k}{2N} + \frac{(p-1)}{2} \), we get: \(x = 1 \) for \(p = 2 \) and \(k = N \).

And we get: \(\Delta x = 1 - \frac{k}{2N} - \frac{p-1}{2} \).

- Average Velocity = \(\frac{\text{Total Distance}}{\text{Total Time}} = \frac{\Delta x}{\Delta t} \).

So, "estimated velocity" for particle \(n \) is:

\[
V_n\left(\frac{k}{2N} + \frac{p-1}{2}\right) = \frac{1 - \frac{k}{2N} - \frac{p-1}{2}}{t_{nN}^2 - t_{nk}^p}.
\]
Possibility 1 (ctd.)

- Then, for each particle \(n \), we will find the velocity according to its position w.r.t. buffer stage and attribute:

\[
v_1(x_{kp}) \ldots v_{100}(x_{kp}), \text{ where } x_{kp} = \frac{k}{2N} + \frac{(p-1)}{2}.
\]

- Velocity coefficient: \(V(x_{kp}) = \frac{1}{100} \sum_j v_j(x_{kp}) \), from mean formula.

\[
\frac{1}{100} \sum_j (v_j(x_{kp}) - V(x_{kp}))^2
\]

- Diffusion coefficient: \(D(x_{kp}) = \frac{V(x_{kp})^2}{V(x_{kp})^2} \), from variance formula.
Possibility 2

- \(V = V(W) \) and \(D = D(W) \)

- \(V \) and \(D \) depend on Wip level of particles:

 \[
 W(t) = \int_0^1 \rho(x, t) dx
 \]
Possibility 3

- $V = V(\rho(x, t))$ and $D = D(\rho(x, t))$.

- V and D depend on density of particles $(\rho(x, t))$.
Possibility 4

- \(V = V(W_-(x,t), W_+(x,t)) \) and \(D = D(W_-(x,t), W_+(x,t)) \)

- \(V \) and \(D \) depend on right and left Wip levels of particles.

where left Wip level is \(W_-(t) = \int_0^x \rho(y,t)dy \)

and right Wip level is \(W_+(t) = \int_x^1 \rho(y,t)dy \).
Possibility 4 (ctd.)

- We can get the Wip level of each particle at each time.
- $W(t_{nk}^p)$ can be found for $n = 1:100$, $k = 1:N$, $p : 1: 2$.

$$1 - \frac{k}{2N} - \frac{p-1}{2}$$

- We know that $V_n(x_k^p) = \frac{2N}{t_{nN}^2 - t_{nk}^p}$, so we can easily draw $W - V$ graph and see how V depends on W.
Possibility 4 (ctd.)

For example:

\[V(0.15) = \frac{\sum_{nkp} v_n(x_k^p) \cdot \chi_{(0.1,0.2)}(W(t_{nk}))}{\sum_{nkp} \chi_{(0.1,0.2)}W(t_{nk})} \]
Objectives

- Objective 1: Find the velocity and diffusion coefficients in terms of position \(x \). So, \(V(x) = ? \) \(D(x) = ? \)

- Objective 2: Overall, what do \(V(x) \) and \(D(x) \) depend on?