Robust Optimal Control of Demand-driven Supply Networks

Marco Laumanns*, ETH Zurich, Institute for Operations Research

*Joint work with
Erjen Lefeber, Eindhoven University of Technology
Rico Zenklusen, ETH Zurich

Research Seminar, ASU, 11 Sep 2006
Overview

1. Supply Networks as Discrete Dynamical Systems
2. Constrained Robust Optimal Control
3. Computational Results
Overview

1. Supply Networks as Discrete Dynamical Systems

2. Constrained Robust Optimal Control

3. Computational Results
Example: Beer Game

A model of a four-stage beer supply chain

- ... to study the formation of control rules of individual as potential sources of the bullwhip effect [Sterman 1989]
- ... showing different kinds of chaotic behavior for certain rules
Dynamics of Nodes

Dynamics of a node \(v \in V \) is given by the map

\[
x^{(v)}(t + 1) = x^{(v)}(t) + e^{\delta(v)} \cdot u_S^{(v)}(t) - e^{\hat{\delta}(v)} \cdot z_S^{(v)}(t),
\]

\[
y_R^{(v)}(t) = z_R^{(v)}(t),
\]

\[
y_S^{(v)}(t) = z_S^{(v)}(t),
\]

where \(e^k \in \mathbb{R}^k \) denotes a row vector with all components equal to one.
Additional Nodes (Delay Elements)

\[
x^{(w)}(t + 1) = u^{(w)}_S(t), \quad x^{(w')} (t + 1) = u^{(w')}_R(t),
\]
\[
y^{(w)}_S(t) = x^{(w)}(t), \quad y^{(w')}_R(t) = x^{(w')} (t).
\]
Additional Nodes (Sources and Sinks)

Sinks (end consumers):

\[y_{R}^{(v_C)}(t) = d^{(v_C)}(t) \] \hspace{1cm} (3)

Sources:

\[y_{S}^{(v_M)}(t) = u_{R}^{(v_M)}(t) \] \hspace{1cm} (4)

for all \(v_{M} \in V_{M} := \{v \in V : \delta^{(v_M)} = \delta'_{v_M} = 0\}\).

Source and sink nodes have no internal state variables.
Resulting Description

By connecting the inputs and outputs of adjacent nodes: First-order difference equation of the form

\[x(t + 1) = Ax(t) + Bu(t) + Ed(t), \]

(5)

with matrices \(A \in \mathbb{R}^{n \times n} \), \(B \in \mathbb{R}^{n \times n_u} \), and \(E \in \mathbb{R}^{n \times n_d} \), where

\[u(t) := [z_1(t) \cdots z_{|\mathbb{V}_z|}(t)]^T \]

(6)

are the remaining free control variables.
Overview

1. Supply Networks as Discrete Dynamical Systems

2. Constrained Robust Optimal Control

3. Computational Results
Robust Optimal Control Model

Assumption: Stochastic input $d(t) \in \mathcal{D} \subset \mathbb{R}^{nd}$ is bounded.

Determine recursively the optimal cost function value J^* and corresponding optimal control input u as explicit functions of the state x (closed-loop feedback control):

$$J^*(k)(x^{(k)}) = \min_{u^{(k)}} J(k)(x^{(k)}, u^{(k)})$$

s.t. \[
\begin{align*}
Fx^{(k)} + Gu^{(k)} &\leq g \\
Ax^{(k)} + Bu^{(k)} + Ed^{(k)} &\in \chi^{(k)}
\end{align*}
\] \forall d^{(k)} \in \mathcal{D},

$$J(k)(x^{(k)}, u^{(k)}) = \max_{d^{(k)} \in \mathcal{D}} ||Qx^{(k)}||_1 + ||Ru^{(k)}||_1 + J^*(k+1)(Ax^{(k)} + Bu^{(k)} + Ed^{(k)})$$

for $k = K - 1, \ldots, 0$, where the set of feasible states is

$$\chi^{(k)} = \{ x \in \mathbb{R}^n : \exists u \in \mathbb{R}^{nu} \text{ with } Fx + Gu \leq g \text{ and } Ax + Bu + Ev \in \chi^{(k+1)} \forall d \in \mathcal{D} \}.$$
Overview

1. Supply Networks as Discrete Dynamical Systems

2. Constrained Robust Optimal Control

3. Computational Results
Example 1: Beergame, One Stage

\[x(t + 1) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u(t) + \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} d(t). \]

Feasible region:

\[x_1 + x_2 \geq 8, \]
\[x_1 + x_2 + x_3 \geq 16, \]
\[x_1 + x_2 + x_3 + x_4 \geq 24 \] \hspace{1cm} (8)

Optimal Control:

\[z^{(B)}_R(x) = u^*(x) = \max\{32 - x_1 - x_2 - x_3 - x_4, 0\}. \] \hspace{1cm} (9)
Example 2: Beergame, All 4 Stages

Feasible region:

\[32 \leq x^{(B)} + x^{(W)} + \sum_{i=1}^{2} (x^{(\sigma i_2)} + x^{(\sigma i_1)}), \]
\[40 \leq x^{(B)} + x^{(W)} + \sum_{i=1}^{2} (x^{(\sigma i_2)} + x^{(\sigma i_1)}) + x^{(\rho_{21})}, \]
\[48 \leq x^{(B)} + x^{(W)} + x^{(D)} + \sum_{i=1}^{3} (x^{(\sigma i_2)} + x^{(\sigma i_1)}), \]
\[56 \leq x^{(B)} + x^{(W)} + x^{(D)} + \sum_{i=1}^{3} (x^{(\sigma i_2)} + x^{(\sigma i_1)}) + x^{(\rho_{31})}, \]
\[64 \leq x^{(B)} + x^{(W)} + x^{(D)} + x^{(F)} + \sum_{i=1}^{4} (x^{(\sigma i_2)} + x^{(\sigma i_1)}), \]

and a resulting optimal control law is (9) for \(u_1^* \) and

\[u_2^*(x) = \max\{48 - x^{(B)} - x^{(W)} - \sum_{i=1}^{2} (x^{(\sigma i_2)} + x^{(\sigma i_1)}) - x^{(\rho_{21})}, 0\}, \]
\[u_3^*(x) = \max\{64 - x^{(B)} - x^{(W)} - x^{(D)} - \sum_{i=1}^{3} (x^{(\sigma i_2)} + x^{(\sigma i_1)}) - x^{(\rho_{31})}, 0\}, \]
\[u_4^*(x) = \max\{72 - x^{(B)} - x^{(W)} - x^{(D)} - x^{(F)} - \sum_{i=1}^{4} (x^{(\sigma i_2)} + x^{(\sigma i_1)}), 0\}, \]
Example 3: One Retailer, Two Suppliers

\[x(t + 1) = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u(t) + \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} d(t). \]

Feasible region is given by \(x_1 + x_2 + x_4 \geq 8 \) and \(x_1 + x_2 + x_3 + x_4 \geq 10 \). Optimal control is

\[u_1^*(x) = \min\{\max\{20 - x_1 - x_2 - x_3 - x_4, 0\}, 4\}, \]
\[u_2^*(x) = \max\{16 - x_1 - x_2 - x_3 - x_4, 0\}. \]

This is a so-called dual base-stock policy.