1. Initial conditions. Real form and complex form of solutions.

2. Qualitative behavior of solutions: periodicity, oscillation (spiraling), decay/growth, convergent/divergent.

3. Separation of variables. For example, with unknown \(y(t) \),
 \[y' + y^2 - ty^2 = 0 \]

4. Integrating factors. For example, with unknown \(y(t) \),
 \[2y' = \frac{y}{t} + f(t). \]

5. Linear System of equations. For example, with unknowns \(x(t) \), \(y(t) \)
 \[
 \begin{cases}
 x' = -9y \\
 y' = 4x
 \end{cases}
 \]

6. Let \(A \) be some constant, \(n \)-by-\(n \) matrix and consider \(\frac{d}{dt}\vec{x} = A\vec{x} \) for the unknown vector \(\vec{x}(t) \). Find fundamental matrix. Derive a solution formula for this system with initial condition \(\vec{x}(0) = \vec{x}_0 \).

7. Nonhomogeneous system. For example, with unknowns, \(x(t) \), \(y(t) \)
 \[
 \begin{cases}
 x' = y - e^t \\
 y' = 3x - 2y + 3e^t
 \end{cases}
 \]

8. Nonhomogeneous 2nd order equation. For example, with unknown \(x(t) \)
 \[2x'' - x' - x = 2t^2 - 10e^{5t} \]

9. Laplace transform. For example, with unknown \(x(t) \)
 \[x'' - x' - x = u(t - 1) \] with \(x(0) = 2 \) and \(x'(0) = 1 \).
10. Nonlinear system. Problem will be similar to HW12. For example, with unknowns $x(t), y(t)$

\[
\begin{cases}
 x' = y^2 - x \\
 y' = 2x + 2y^2 - 4
\end{cases}
\]

11. Spring-mass system with damping. For example

Find the value for k so that the system is critically damped $x'' = -kx - 4x'$