MAT 194/294/394/494, Fall Semester 2006
Functional Equations

Functions from the Integers to the Integers

(A1) Let \(f \) be a function from \(\mathbb{Z}^+ \) to \(\mathbb{Z}^+ \). Prove that if
\[
f(n + 1) > f(f(n))
\]
for all \(n \in \mathbb{Z}^+ \), then \(f(n) = n \) for all \(n \).

(A2) Prove that \(f(n) = 1 - n \) is the only function from \(Z \) to \(Z \) that satisfies the following conditions:

(i) \(f(f(n)) = n \), for all integers \(n \).
(ii) \(f(f(n + 2) + 2) = n \), for all integers \(n \).
(iii) \(f(0) = 1 \).

(A3) Let \(f \) be defined on the natural numbers as follows: \(f(1) = 1 \) and for \(n > 1 \),
\[
f(n) = f(f(n - 1)) + f(n - f(n - 1)).
\]
Find, with proof, a simple explicit expression for \(f(n) \) which is valid for all \(n = 1, 2, \ldots \)

(A4) Determine all functions \(f \) from \(Z \) to \(Z \) satisfying
\[
f(x^3 + y^3 + z^3) = (f(x))^3 + (f(y))^3 + (f(z))^3
\]
for all integers \(x, y, \) and \(z \).

(A5) Suppose \(f \) is a function from \(\mathbb{Z}^* \) to \(\mathbb{Z}^* \), \(f(1) > 0 \), and
\[
f(m^2 + n^2) = f(m)^2 + f(n)^2
\]
for all integers \(m \) and \(n \). Show that \(f(n) = n \) for all \(n \).

Functions from the Reals to the Reals

(B1) Let \(f \) be a function from \(R \) to \(R \) such that, for some constant \(a \),
\[
f(x + a) = \frac{1}{2} + \sqrt{f(x) - (f(x))^2}
\]
for all \(x \). Prove that \(f \) is periodic, and give an example of a non-constant function \(f \) that satisfies the equation above with \(a = 1 \).

(B2) Suppose \(f \) is a function from \(R \) to \(R \), and that
\[
f(x + y) = f(x) + f(y)
\]
for all reals \(x, y \). Show that \(f(x) = cx \) for some real number \(c \).
(B3) Suppose f is a continuous function from R^+ to R, and that $f(1) = 5$ and

$$f\left(\frac{x}{x+1}\right) = f(x) + 2,$$

for all positive reals x.

(i) Find $\lim_{x \to +\infty} f(x)$.

(ii) Prove that $\lim_{x \to 0^+} f(x) = +\infty$.

(iii) Find all functions f which satisfy the given conditions.

(B4) Suppose that f is a function from R to R, that

$$f(tx) = tf(x)$$

for all real x and all nonnegative real t, and that f is differentiable at 0. Prove that f is linear.

(B5) Find every function f from R to R such that

$$f(x^2 + y + f(y)) = 2y + (f(x))^2$$

for all reals x and y.

(B6) Find every function f from R to R that is continuous at 0, and satisfies

$$f(x + 2f(y)) = f(x) + y + f(y)$$

for all reals x and y.

(B7) Show that for $d < -1$ there are exactly two functions f from R to R such that, for all reals x and y,

$$f(x + y) - f(x)f(y) = d \sin x \sin y.$$

(B8) For each of the conditions (a) and (b), find all functions f from R to R such that the stated condition holds for all reals x, y.

(a) $f(x + f(x)f(y)) = f(x) + xf(y)$.

(b) $f(x + f(xy)) = f(x) + xf(y)$.
(B9) Find all polynomials such that \(p(2) = 2 \) and
\[
p(x^2 - 1) = (p(x))^2 - 1
\]
for all reals \(x \).

(B10) Let \(f \) be a continuous function from \(R \) to \(R \) such that
\[
f(2x^2 - 1) = 2f(x)
\]
for all reals \(x \). Show that \(f(x) = 0 \) for all \(x \) between \(-1\) and \(1\).

(B11) Let \(f \) and \(g \) be functions from \(R \) to \(R \) satisfying
\[
f(x + y) + f(x - y) = 2f(x)g(y)
\]
for all real \(x, y \). Prove that if \(f \) is not identically 0, and if \(|f(x)| \leq 1 \) for all \(x \), then \(|g(x)| \leq 1 \) for all \(x \).

Equations With Derivatives

(C1) Suppose \(f \) is a twice-differentiable function from \(R \) to \(R \), and that the following are true for all real \(x \).
Solve for \(f \).
\[
\begin{align*}
f(x) &= f(x + 2), \\
f'(x) &= f(x + 1) - 2.
\end{align*}
\]

(C2) Define polynomials \(f_n \) for \(n \geq 0 \) by \(f_0(x) = 1 \), \(f_n(0) = 0 \) for \(n \geq 1 \), and
\[
\frac{d}{dx}(f_{n+1}(x)) = (n + 1)f_n(x + 1)
\]
for \(n \geq 0 \). Find, with proof, the explicit factorization of \(f_{100}(1) \) into powers of distinct primes.

(C3) For each of the conditions (a) and (b), find all differentiable functions \(f \) from \(R \) to \(R \) such that that equation is true.
\[
\begin{align*}
(a) & \quad \frac{f(b) - f(a)}{b - a} = \frac{1}{2} (f'(a) + f'(b)). \\
(b) & \quad \frac{f(b) - f(a)}{b - a} = \sqrt{f'(a)f'(b)}.
\end{align*}
\]

(C4) Suppose \(f \) and \(g \) are nonconstant, differentiable functions from \(R \) to \(R \). Furthermore, suppose that for each pair of real numbers \(x \) and \(y \),
\[
\begin{align*}
f(x + y) &= f(x)f(y) - g(x)g(y), \\
g(x + y) &= f(x)g(y) + g(x)f(y).
\end{align*}
\]
If \(f'(0) = 0 \), prove that \((f(x))^2 + (g(x))^2 = 1 \) for all \(x \).