(1) [30 points] For the matrix A below, find a basis for the null space of A, the row space of A, the column space of A, the rank of A, and the nullity of A. The reduced row echelon form of A is the matrix R given below.

$$A = \begin{bmatrix} 1 & -2 & 4 & 3 & 6 \\ -1 & 2 & -4 & -3 & -6 \\ -2 & 4 & -8 & 3 & 15 \end{bmatrix} \quad R = \begin{bmatrix} 1 & -2 & 4 & 0 & -3 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution: The null space is the set of all \vec{x} such that $A\vec{x} = \vec{0}$, or $R\vec{x} = \vec{0}$. The parameterization for these solutions is given by:

$$x_1 = 2r - 4s + 3t$$
$$x_2 = r$$
$$x_3 = s$$
$$x_4 = -3t$$
$$x_5 = t$$

so $x_3 = r \cdot 0 + s \cdot 1 + t \cdot -3$,

so a basis for the null space is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} r + \begin{bmatrix} -4 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} s + \begin{bmatrix} 3 \\ 0 \\ 0 \\ -3 \\ 1 \end{bmatrix} t,$$

so a basis for the null space is

$$\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 0 \\ -3 \\ 1 \end{bmatrix} \right\}.$$ Since there are three vectors in this set, the nullity is 3.

A basis for the column space consists of the columns of A which have a pivot in them, namely

$$\left\{ \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ 3 \end{bmatrix} \right\}.$$ A basis for the row space of A is the nonzero rows of R, namely

$$\{[1, -2, 4, 0, -3], [0, 0, 0, 1, 3]\}.$$ Since there are two vectors in each of these sets, the rank of A is 2.

Grading: +10 points for the null space basis, +5 points for the nullity, the row space basis, the column space basis, and the rank. Grading for common mistakes: −3 points for choosing the columns of R; −3 points for choosing rows from A.

1
Let \(B = \begin{pmatrix} -1 & 3 & 1 \\ 0 & -2 & 1 \\ 4 & -3 & -2 \end{pmatrix} \) and \(C = \begin{pmatrix} 1 & -1 & -2 \\ 3 & -2 & -3 \\ 2 & -3 & -6 \end{pmatrix} \) be two ordered bases for \(\mathbb{R}^3 \).

(a) [10 points] Find the coordinates of the vector \(\vec{u} = \begin{pmatrix} -11 \\ 5 \\ 48 \end{pmatrix} \) with respect to the ordered basis \(B \).

\[
\begin{align*}
\begin{bmatrix} \vec{u} \end{bmatrix}_B &= \tilde{B}^{-1} \cdot \vec{u} \\
&= \begin{bmatrix} -1 & -3 & 1 \\ 0 & -1 & 1 \\ 4 & 9 & -2 \end{bmatrix}^{-1} \cdot \begin{pmatrix} -11 \\ 5 \\ 48 \end{pmatrix} \\
&= \begin{pmatrix} 4 \\ 6 \\ 11 \end{pmatrix}.
\end{align*}
\]

Grading: +4 points for the basic formula \(\begin{bmatrix} \vec{u} \end{bmatrix}_B = \tilde{B}^{-1} \cdot \vec{u} \), +3 points for substitution, +3 points for calculation.

(b) [10 points] Find the change of basis matrix from \(C \) to \(B \).

\[
\begin{align*}
\tilde{B}^{-1} \cdot \tilde{C} &= \begin{bmatrix} -1 & -3 & 1 \\ 0 & -1 & 1 \\ 4 & 9 & -2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & -1 & -2 \\ 3 & -2 & -3 \\ 2 & -3 & -6 \end{bmatrix} \\
&= \begin{bmatrix} 2 & -7 & -17 \\ 0 & 3 & 8 \\ 3 & 1 & 5 \end{bmatrix}.
\end{align*}
\]

Grading: +4 points for the basic formula \(\tilde{B}^{-1} \cdot \tilde{C} \), +3 points for substitution, +3 points for calculation. Grading for common mistakes: +7 points (total) for \(\tilde{C}^{-1} \cdot \tilde{B} \); +3 points (total) for \(\tilde{B} \cdot \tilde{C}^{-1} \) or \(\tilde{C} \cdot \tilde{B}^{-1} \), +3 points (total) for including \(\vec{u} \) in the answer.
Let \(\vec{v}_1 = \begin{bmatrix} -1 \\ -3 \\ 3 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 3 \\ 9 \\ -9 \\ -3 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} -3 \\ 3 \\ 3 \\ -3 \end{bmatrix}, \vec{v}_4 = \begin{bmatrix} -3 \\ -15 \\ -9 \\ -11 \end{bmatrix} \), and let \(W \) be the subspace spanned by these vectors.

(a) [15 points] The set \(\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\} \) is linearly dependent. Find a linearly independent set of vectors whose span is \(W \), and the dimension of \(W \).

Solution: The first part is like finding the column space of a matrix: Choose the vectors which have pivots in their columns (in the RREF).

\[
\begin{bmatrix}
-1 & 3 & -3 & 11 \\
-3 & 9 & 3 & -3 \\
3 & -9 & 3 & -15 \\
1 & -3 & 3 & -11 \\
\end{bmatrix}
\begin{bmatrix}
1 & -3 & 0 & -2 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Thus \(\{\vec{v}_1, \vec{v}_3\} \) is one possible answer. Since there are two vectors in this set, the dimension of \(W \) is \(2 \).

Grading: +5 points for the RREF, +5 points for choosing the vectors, +5 points for finding the dimension. Grading for common mistakes: +5 points (total) for finding a nontrivial linear combination of the vectors which adds up to \(\vec{0} \); +7 points (total) for finding the null space of the matrix above.

(b) [10 points] Is \(\begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix} \) in \(W \)? Justify your answer.

Solution: A vector \(\vec{u} \) is in \(W \) if the system of linear equations \([\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 | \vec{u}] \) has at least one solution. We can check for this by finding the RREF:

\[
\begin{bmatrix}
-1 & 3 & -3 & 11 & 2 \\
-3 & 9 & 3 & -3 & 0 \\
3 & -9 & 3 & -15 & 1 \\
1 & -3 & 3 & -11 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & -3 & 0 & -2 & 0 \\
0 & 0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

This system has no solutions (see the third row), so the vector is not in \(W \).

Grading: +4 points for the initial augmented matrix, +3 points for the RREF, +3 points for the answer.
(4) [25 points] Let \(A \) be the matrix \[
\begin{bmatrix}
-1 & -2 & 4 \\
-1 & 0 & 2 \\
-1 & -1 & 3
\end{bmatrix}
\]. Find the eigenvalues of \(A \), and for ONE of the eigenvalues, find a basis for its eigenspace.

Solution: To find the eigenvalues, we need to determine when \(\det(A - \lambda I) = 0 \):

\[
0 = \det(A - \lambda I) = \begin{vmatrix}
-1 - \lambda & -2 & 4 \\
-1 & -\lambda & 2 \\
-1 & -1 & 3 - \lambda
\end{vmatrix}
\]

\[
= (-1 - \lambda)(-\lambda)(3 - \lambda) + (-2)(2)(-1) + 4(-1)(-1)
- (-1 - \lambda)(2)(-1) - (-\lambda)(4)(-1) - (3 - \lambda)(-1)(-2) = \cdots
\]

\[
= -\lambda^3 + 2\lambda^2 - \lambda = -\lambda(\lambda^2 - 2\lambda + 1) = -\lambda(\lambda - 1)^2,
\]

so the eigenvalues are \(0 \) and \(1 \).

To find the eigenvectors for \(\lambda = r \), find a basis for the null space of \(A - rI \).

For \(\lambda = 0 \),

\[
A - 0I = \begin{bmatrix}
-1 & -2 & 4 \\
-1 & 0 & 2 \\
-1 & -1 & 3
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{bmatrix}
\]

and the parameterization is \(x_1 = 2s, \ x_2 = s, \ x_3 = s \), so an eigenvector looks like \(s \cdot \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \) and a basis for the eigenspace is \(\left\{ \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\} \).

For \(\lambda = 1 \),

\[
A - 1I = \begin{bmatrix}
-2 & -2 & 4 \\
-1 & -1 & 2 \\
-1 & -1 & 2
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

and the parameterization is \(x_1 = -s + 2t, \ x_2 = s, \ x_3 = t \), so an eigenvector looks like \(s \cdot \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \) and a basis for the eigenspace is \(\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\} \).

Grading: +10 points for the eigenvalues, +15 points for the eigenspace basis. For the eigenvalues: +3 points for the \(\det(A - \lambda I) \) formula, +7 points for finding the roots. For the eigenspace: +4 points for \(A - \lambda I \), +4 points for the RREF, +4 points for the parameterization, +3 points for the basis. Grading for common mistakes: −3 points for an incomplete expansion by minors (for finding the determinant), −10 points if the RREF of \(A - \lambda I \) turned out to be \(I \) (this means you made a mistake somewhere).
(1) [30 points] For the matrix A below, find a basis for the null space of A, the row space of A, the column space of A, the rank of A, and the nullity of A. The reduced row echelon form of A is the matrix R given below.

$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 4 & -3 & 17 & 7 \\ 4 & -1 & 11 & 5 \end{bmatrix} \quad R = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution: The null space is the set of all \vec{x} such that $A\vec{x} = \vec{0}$, or $R\vec{x} = \vec{0}$. The parameterization for these solutions is given by:

$$x_1 = -2s - t$$
$$x_2 = 3s + t$$
$$x_3 = s$$
$$x_4 = t$$

so a basis for the null space is

$$\left\{ \begin{bmatrix} -2 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Since there are three vectors in this set, the nullity is 2.

A basis for the column space consists of the columns of A which have a pivot in them, namely

$$\left\{ \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ -3 \\ -1 \end{bmatrix} \right\}.$$

A basis for the row space of A is the nonzero rows of R, namely

$$\left\{ [1, 0, 2, 1], [0, 1, -3, -1] \right\}.$$

Since there are two vectors in each of these sets, the rank of A is 2.

Grading: +10 points for the null space basis, +5 points for the nullity, the row space basis, the column space basis, and the rank. Grading for common mistakes: −3 points for choosing the columns of R; −3 points for choosing rows from A.

1
(2) Let $B = \begin{pmatrix}
-1 & -3 & -3 \\
4 & 13 & 11 \\
-3 & -8 & -11
\end{pmatrix}$ and $C = \begin{pmatrix}
1 & 2 & 4 \\
-2 & -5 & -12 \\
-4 & -11 & -27
\end{pmatrix}$ be two ordered bases for \mathbb{R}^3.

(a) [10 points] Find the coordinates of the vector $\vec{u} = \begin{pmatrix}
18 \\
-48 \\
-106
\end{pmatrix}$ with respect to the ordered basis C.

Solution: If $\tilde{C} = \begin{pmatrix}
1 & 2 & 4 \\
-2 & -5 & -12 \\
-4 & -11 & -27
\end{pmatrix}$, then the coordinates of \vec{u} are

$$[\vec{u}]_C = \tilde{C}^{-1} \cdot \vec{u} = \begin{pmatrix}
1 & 2 & 4 \\
-2 & -5 & -12 \\
-4 & -11 & -27
\end{pmatrix}^{-1} \cdot \begin{pmatrix}
18 \\
-48 \\
-106
\end{pmatrix} = \begin{pmatrix}
2 \\
4 \\
2
\end{pmatrix}.$$

Grading: +4 points for the basic formula $[\vec{u}]_C = \tilde{C}^{-1} \cdot \vec{u}$, +3 points for substitution, +3 points for calculation.

(b) [10 points] Find the change of basis matrix from B to C.

Solution: This matrix is

$$\tilde{C}^{-1} \cdot \tilde{B} = \begin{pmatrix}
1 & 2 & 4 \\
-2 & -5 & -12 \\
-4 & -11 & -27
\end{pmatrix}^{-1} \cdot \begin{pmatrix}
-1 & -3 & -3 \\
4 & 13 & 11 \\
-3 & -8 & -11
\end{pmatrix} = \begin{pmatrix}
-49 & -153 & -145 \\
50 & 157 & 147 \\
-13 & -41 & -38
\end{pmatrix}.$$

Grading: +4 points for the basic formula $\tilde{C}^{-1} \cdot \tilde{B}$, +3 points for substitution, +3 points for calculation. Grading for common mistakes: +7 points (total) for $\tilde{B}^{-1} \cdot \tilde{C}$; +3 points (total) for $\tilde{B} \cdot \tilde{C}^{-1}$ or $\tilde{C} \cdot \tilde{B}^{-1}$; +3 points (total) for including \vec{u} in the answer.
(3) Let \(\vec{v}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} -2 & 2 \\ -2 & 2 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \ \vec{v}_4 = \begin{bmatrix} -5 & -2 \\ 0 & 2 \end{bmatrix}, \) and let \(W \) be the subspace spanned by these vectors.

(a) [15 points] The set \(\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \} \) is linearly dependent. Find a linearly independent set of vectors whose span is \(W \), and the dimension of \(W \).

Solution: The first part is like finding the column space of a matrix: Choose the vectors which have pivots in their columns (in the RREF).

Thus \(\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \} \) is one possible answer. Since there are three vectors in this set, the dimension of \(W \) is \(3 \).

Grading: +5 points for the RREF, +5 points for choosing the vectors, +5 points for finding the dimension. Grading for common mistakes: +5 points (total) for finding a nontrivial linear combination of the vectors which adds up to \(\vec{0} \); +7 points (total) for finding the null space of the matrix above.

(b) [10 points] Is \(\begin{bmatrix} 2 \\ 4 \\ 4 \\ 2 \end{bmatrix} \) in \(W \)? Justify your answer.

Solution: A vector \(\vec{u} \) is in \(W \) if the system of linear equations \([\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 | \vec{u}] \) has at least one solution. We can check for this by finding the RREF:

This system has no solutions (see the fourth row), so the vector is not in \(W \).

Grading: +4 points for the initial augmented matrix, +3 points for the RREF, +3 points for the answer.
(4) [25 points] Let A be the matrix $\begin{bmatrix} 5 & -2 & -3 \\ 1 & 2 & -3 \\ 1 & -2 & 1 \end{bmatrix}$. Find the eigenvalues of A, and for ONE of the eigenvalues, find a basis for its eigenspace.

Solution: To find the eigenvalues, we need to determine when $\det(A - \lambda I) = 0$:

$$0 = \det(A - \lambda I) = \begin{vmatrix} 5 - \lambda & -2 & -3 \\ 1 & 2 - \lambda & -3 \\ 1 & -2 & 1 - \lambda \end{vmatrix} = (5 - \lambda)(2 - \lambda)(1 - \lambda) + (6) + (6) + 3(2 - \lambda) - 6(5 - \lambda) + 2(1 - \lambda) = \cdots = -\lambda^3 + 8\lambda^2 - 16\lambda = -\lambda(\lambda^2 - 8\lambda + 16) = -\lambda(\lambda - 4)^2,$$

so the eigenvalues are 0 and 4.

To find the eigenvectors for $\lambda = r$, find a basis for the null space of $A - rI$.

For $\lambda = 0$,

$$A - 0I = \begin{bmatrix} 5 & -2 & -3 \\ 1 & 2 & -3 \\ 1 & -2 & 1 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

and the parameterization is $x_1 = s$, $x_2 = s$, $x_3 = s$, so an eigenvector looks like $s \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and a basis for the eigenspace is $\begin{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{bmatrix}$.

For $\lambda = 4$,

$$A - 4I = \begin{bmatrix} 1 & -2 & -3 \\ 1 & -2 & -3 \\ 1 & -2 & -3 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & -2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and the parameterization is $x_1 = 2s + 3t$, $x_2 = s$, $x_3 = t$, so an eigenvector looks like $s \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$ and a basis for the eigenspace is $\begin{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$.

Grading: +10 points for the eigenvalues, +15 points for the eigenspace basis. For the eigenvalues: +3 points for the $\det(A - \lambda I)$ formula, +7 points for finding the roots. For the eigenspace: +4 points for $A - \lambda I$, +4 points for the RREF, +4 points for the parameterization, +3 points for the basis. Grading for common mistakes: −3 points for an incomplete expansion by minors (for finding the determinant), −10 points if the RREF of $A - \lambda I$ turned out to be I (this means you made a mistake somewhere).