Solutions to MAT 270 Test #3

Because there are two versions of the test, solutions will only be given for Form N (N). Differences from the Form S (S) version will be given. (The values for Form N appear above those of Form S in the curly braces {}.)

N S (1) (15 points) Consider the curve \(\{ x^2y + x - y^2 + 1 = 0, xy^2 - y + x^3 - 3 = 0 \} \). Find the slope of the tangent line at the point (1, 2).

Solution: Because we do not have \(y \) explicitly as a function of \(x \), we need to use implicit differentiation. Remember that when using implicit differentiation, that the derivative of \(y^2 \) is \(2y(y') \), etc. For N, we get the equation

\[
x^2(y') + y \cdot 2x + 1 - 2y(y') = 0,
\]

and when we solve for \(y' \), we get

\[
(x^2 - 2y)(y') = -2xy - 1, \quad \text{or} \quad y' = \frac{-2xy - 1}{x^2 - 2y}.
\]

This is the derivative at an arbitrary point. To find the slope of the tangent line at the point (1, 2), we put in \(x = 1 \) and \(y = 2 \), so that \(y' = \frac{-2(1)(2) - 1}{(1)^2 - 2(2)} = \frac{5}{3} \).

When we use implicit differentiation for S, we get

\[
x \cdot 2y(y') + y^2 - (y') + 3x^2 = 0
\]

\[
(2xy - 1)(y') = -y^2 - 3x^2
\]

\[
y' = \frac{-y^2 - 3x^2}{2xy - 1},
\]

and when we substitute \(x = 1 \) and \(y = 2 \), we find that the slope of the line is \(\frac{-(2)^2 - 3(1)^2}{2(1)(2) - 1} = \frac{-7}{3} \).

Grading: This problem was graded on a 0–5–10–15-point basis. Grading for common mistakes: -3 points for not putting in \(x = 1 \) and \(y = 2 \); -3 points for solving (incorrectly) for \(y \) first.
(2) (15 points) Find the largest and smallest values that \(\left\{ \frac{x^3 - 5x^2 + 7x - 3}{x^3 - 3x^2 + 4} \right\} \) attains on the interval \(\left\{ \begin{align*} {[0, 3]} \\ {[-2, 2]} \end{align*} \right\} \), and the value(s) of \(x \) where they occur.

Solution: The largest and smallest values can only occur at an endpoint or at a critical point, so we need to find these first. For \(N \), we find the critical points by looking at the derivative of \(f(x) = x^3 - 5x^2 + 7x - 3 \):

\[
f'(x) = 3x^2 - 10x + 7 = (3x - 7)(x - 1).
\]

Since \(f'(x) \) is defined for all values of \(x \), the critical points are those values of \(x \) where \(f'(x) = 0 \). Looking at the factored form, we see that the critical points are \(x = 1 \) and \(7/3 \). We also need to consider the endpoints, because a minimum or maximum can also occur there. So, we have the four candidates 0, 1, 7/3, and 3. Now we evaluate \(f(x) \) at each one of these points to find out where the largest and smallest values occur:

\[
\begin{align*}
f(0) &= -3 \\
f(1) &= 1 - 5 + 7 - 3 = 0 \\
f(7/3) &= (7/3)^3 - 5(7/3)^2 + 7(7/3) - 3 \approx -1.185 \ldots \\
f(3) &= 27 - 45 + 21 - 3 = 0
\end{align*}
\]

The minimum value that \(f(x) \) attains is \(-3 \), which occurs at \(x = 0 \); the largest value that \(f(x) \) attains is 0, when \(x = 1 \) or \(x = 3 \).

For \(S \), the procedure is the same; the numbers are different. Here we let \(g(x) = x^3 - 3x^2 + 4 \). Then

\[
g'(x) = 3x^2 - 6x = 3x(x - 2),
\]

so the critical points of \(g(x) \) are \(x = 0 \) and \(x = 2 \). We now evaluate \(g(x) \) at \(x = -2 \), \(x = 0 \), and \(x = 2 \):

\[
\begin{align*}
g(-2) &= (-2)^3 - 3(-2)^2 + 4 = -16 \\
g(0) &= 4 \\
g(2) &= 8 - 12 + 4 = 0
\end{align*}
\]

The minimum value of \(g(x) \) is \(-16\), which occurs at \(x = -2 \); the largest value of \(g(x) \) is 4, which occurs at \(x = 0 \).

Grading: +5 points for finding the critical points, +5 points for evaluating the function at the critical points and endpoints, +5 points for picking out the largest and smallest values. Grading for common mistakes: -2 points if the values of \(x \) were substituted into \(f'(x) \) (or \(g'(x) \)) instead of \(f(x) \) (or \(g(x) \)); -2 points if the values of \(x \) weren’t given, where the largest and smallest function values.
(3) (20 points) A television camera is positioned 5280 ft from the base of a rocket launching pad. The angle of elevation of the camera changes so that the camera remains pointed at the rocket. Assuming that the rocket rises vertically at 650 ft/s, how fast is the camera’s angle of elevation changing when the rocket’s altitude is 3500 ft?

Solution: We start with a diagram (to the left). The variable x represents the height of the rocket, and θ represents the angle of elevation; we now need a relationship between x and θ. From trigonometry, we know that $\frac{x}{5280} = \tan \theta$. Taking derivatives:

$$\frac{x'}{5280} = \sec^2 \theta \cdot (\theta').$$

Now, x' (which is $\frac{dx}{dt}$) is the rate at which x is changing: this is the speed of the rocket (650 ft/s), and θ' (or $\frac{d\theta}{dt}$) is the rate at which θ is changing, which is what we are looking for. We need to find the value of $\sec \theta$. The quickest way to do this is to find the inverse tangent of $\frac{3500}{5280}$, which is approximately 33.53955°.

Then $\sec \theta \approx 1.19976$, so $\frac{650}{5280} = (1.19976)^2 \cdot (\theta')$, and $\theta' \approx 0.0855$.

Grading: +6 points for the trigonometric ratio, +7 points for taking derivatives, +7 points for finding θ'

(3) (20 points) A ladder 12 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a speed of 1.5 ft/s, how fast is the angle between the ladder and the wall changing when that angle is $\pi/3$ radians?

Solution: We start with a diagram (to the left). Once again, we need to find a relationship between x and θ. In this case, the relationship for $\sin \theta$ is important:

$$\frac{x}{12} = \sin \theta.$$

Taking derivatives, we have $\frac{x'}{12} = \cos \theta \cdot (\theta')$.

Now we substitute values. The value of x' (which can also be written as $\frac{dx}{dt}$) is how fast the distance from the bottom of the ladder is moving away from the wall, namely 1.5 ft/s; the value of θ' (or $\frac{d\theta}{dt}$) is how fast the angle θ is changing, which is the object of the problem. When $\theta = \pi/3$, $\cos \theta = 0.5$. Thus

$$\theta' = \frac{x'}{12 \cos \theta} = \frac{1.5}{(12)(0.5)} = 0.25 \text{ rad/s}.$$

Grading: See N. Grading for common mistakes: −2 points if $\frac{x'}{12}$ was given as the derivative of $\frac{x}{12}$; −13 points for finding $\frac{dy}{dt}$, where y is the distance from the top of the ladder to the ground.
(4) (20 points) Sketch the graph of the function \(f(x) = \left\{ \begin{array}{ll} xe^x - e^x & \\ 2xe^x + e^x & \end{array} \right\} \). Be sure to include any relative maxima, relative minima, and inflection points that may exist. Note that \(\lim_{x \to -\infty} f(x) = 0 \).

Solution: We will find the relative maxima, relative minima, and inflection points first. When \(f(x) = xe^x - e^x \),

\[
\begin{align*}
f'(x) &= xe^x + e^x - e^x = xe^x \\
f''(x) &= xe^x + e^x = (x + 1)e^x.
\end{align*}
\]

Critical points are where \(f'(x) \) is zero or undefined. Since \(f'(x) \) is defined for all \(x \), this means we only have one critical point \(x = 0 \). (Also because \(e^x \) is never zero.) Using a test point, we find that \(f'(x) \) is negative (and \(f(x) \) is decreasing) if \(x < 0 \), and \(f'(x) \) is positive (and \(f(x) \) is increasing) if \(x > 0 \). Hence \(x = 0 \) is a relative minimum.

Now we look for possible inflection points. These points are where \(f''(x) \) is zero or undefined. Once again, \(f''(x) \) is defined for all \(x \), and is zero only if \(x = -1 \). Using test points, we see that \(f(x) \) is concave downward if \(x < -1 \) and concave upward if \(x > -1 \). Hence \(x = -1 \) is an inflection point.

We now plot some important points: \(x \)-intercept(s) \((x = 1)\) is the only \(x \)-intercept, so the point \((1,0)\) is on the graph of \(f(x) \), the critical point \((0,-1)\), and the inflection point \((-1, -e^{-1} - e^{-1}) \approx (-1, -0.735)\). We now “connect the dots”, noticing that \(f(x) \) has a horizontal asymptote of \(y = 0 \) to the left. We get a graph like on the next page, to the left.

For \(S \), the procedure is the same, but the numbers are different.

\[
\begin{align*}
f(x) &= 2xe^x + e^x = (2x + 1)e^x \\
f'(x) &= 2xe^x + e^x \cdot 2 + e^x = (2x + 3)e^x \\
f''(x) &= 2xe^x + 2e^x + 3e^x = (2x + 5)e^x.
\end{align*}
\]

The function \(f(x) \) has an \(x \)-intercept at \(x = -1/2 \), a relative minimum at \(x = -3/2 \), and an inflection point at \(x = -5/2 \). The function \(f(x) \) is also decreasing for all \(x < -3/2 \) and increasing for all \(x > -3/2 \), and is concave downward if \(x < -5/2 \) and concave upward for \(x > -5/2 \). Once again, \(f(x) \) has a horizontal asymptote of \(y = 0 \) to the left, and a sketch of the graph \(f(x) \) appears to the right on the next page. (The coordinates of the special points are \((-3/2, -2e^{-3/2}) \approx (-3/2, -0.446)\) and \((-5/2, -4e^{-5/2}) \approx (-5/2, -0.328)\).)
Grading: +5 points for finding the first and second derivatives of \(f(x) \), +5 points for finding the critical point(s) and the inflection point(s), +10 points for sketching the graph of \(f(x) \). Grading for common mistakes: −2 points for “no inflection points”; −7 points for not finding the second derivative.
(5) (10 points each) Find

(a) the first derivative of \((1 - x)^{(1+x^2)}\).

Solution: The key is to use logarithmic differentiation. First write
\[
y = (1 - x)^{(1+x^2)}.
\]
Then take logarithms:
\[
\ln y = \ln(1 - x)^{(1+x^2)} = (1 + x^2) \ln(1 - x)
\]
Use implicit differentiation:
\[
\frac{1}{y} \cdot y' = (1 + x^2) \cdot \frac{1}{1-x} \cdot (-1) + \ln(1-x) \cdot 2x
\]
\[
y' = y \left[(1 + x^2) \cdot \frac{1}{1-x} \cdot (-1) + \ln(1-x) \cdot 2x \right]
\]
\[
= (1 - x)^{(1+x^2)} \left[(1 + x^2) \cdot \frac{1}{1-x} \cdot (-1) + \ln(1-x) \cdot 2x \right]
\]
Grading: +3 points for taking logarithms, +5 points for using implicit differentiation, +2 points for solving for \(y'\) (dy/dx). Grading for common mistakes: +5 points for finding the derivative of \(\ln(y)\).

(b) the second derivative of \(\cosh(3x)\).

Solution: The second derivative of a function is the derivative of the derivative. The easy way to find derivatives of \(\cosh(3x)\) is to convert it to exponential form first:
\[
f(x) = \cosh(3x) = \frac{e^{3x} + e^{-3x}}{2}
\]
\[
f'(x) = \frac{3e^{3x} - 3e^{-3x}}{2}
\]
\[
f''(x) = \frac{9e^{3x} + 9e^{-3x}}{2}
\]
Answer: \(\frac{9e^{3x} + 9e^{-3x}}{2}\), which is the same as \(9 \cosh(3x)\).
Grading: +5 points for each derivative.

(c) \(\lim_{x \to e} \frac{\ln x - 1}{x - e}\).

Solution: Trying to put in \(x = e\) results in a limit of the type \(0/0\), so the limit is an indeterminate form. Trying L’Hospital’s rule, we see that
\[
\lim_{x \to e} \frac{\ln x - 1}{x - e} \overset{\text{L'H}}{=} \lim_{x \to e} \frac{1/x}{1} = \frac{1}{e}.
\]
Grading: +3 points for recognizing the indeterminate form, +5 points for trying L’Hospital’s rule, +2 points for evaluating the second limit.
(a) the first derivative of \((1 - x^2)^{(1+x)}\).

Solution: The key is to use logarithmic differentiation. First write

\[y = (1 - x^2)^{(1+x)}. \]

Then take logarithms:

\[\ln y = \ln(1 - x^2)^{(1+x)} = (1 + x) \ln(1 - x^2) \]

Use implicit differentiation:

\[\frac{1}{y} \cdot y' = (1 + x) \cdot \frac{1}{1 - x^2} \cdot (-2x) + \ln(1 - x^2) \]

\[y' = y \left[(1 + x) \cdot \frac{1}{1 - x^2} \cdot (-2x) + \ln(1 - x^2) \right] \]

\[= (1 - x^2)^{(1+x)} \left[(1 + x) \cdot \frac{1}{1 - x^2} \cdot (-2x) + \ln(1 - x^2) \right] \]

Grading: +3 points for taking logarithms, +5 points for using implicit differentiation, +2 points for solving for \(y'\) (\(dy/dx\)). Grading for common mistakes: +5 points for finding the derivative of \(\ln(y)\).

(b) the second derivative of \(\sinh(2x)\).

Solution: The second derivative of a function is the derivative of the derivative. The easy way to find derivatives of \(\sinh(2x)\) is to convert it to exponential form first:

\[f(x) = \sinh(2x) = \frac{e^{2x} - e^{-2x}}{2} \]

\[f'(x) = \frac{2e^{2x} + 2e^{-2x}}{2} \]

\[f''(x) = \frac{4e^{2x} - 4e^{-2x}}{2} \]

Answer: \(\frac{4e^{2x} - 4e^{-2x}}{2}\), which is the same as \(4 \sinh(3x)\).

Grading: +5 points for each derivative.

(c) \(\lim_{x \to 0} \frac{e^x - 1}{x^2 + x}\).

Solution: Trying to put in \(x = 0\) results in a limit of the type 0/0, so the limit is an indeterminate form. Trying L’Hospital’s rule, we see that

\[\lim_{x \to 0} \frac{e^x - 1}{x^2 + x} \leq \lim_{x \to 0} \frac{\frac{e^x}{2x + 1}}{2x + 1} = \frac{1}{1} = 1. \]

Grading: +3 points for recognizing the indeterminate form, +5 points for trying L’Hospital’s rule, +2 points for evaluating the second limit.