1. This is the graph of a function $g(x)$:

![Graph of $g(x)$](image)

a. [5 pts] Find the intervals where $g(x)$ is increasing and the intervals where $g(x)$ is decreasing.

Solution: The graph goes up and to the right from $(-4, -2)$ to $(-2, 0)$, down and to the right from $(-2, 0)$ to $(0, -2)$, and up and to the right from $(0, -2)$ to $(1, 1)$. Since the intervals are only the x values, $g(x)$ is increasing on the intervals $(-4, -2)$ ($-4 < x < -2$) and $(0, 1)$ ($0 < x < 1$), and decreasing on the interval $(-2, 0)$ ($-2 < x < 0$).

Grading: −1 point if the y values were included.

b. [10 pts] Sketch the graph of $-2g(-x) - 4$.

Solution: Since we don’t have a formula for $g(x)$, we have to use transformations to sketch the graph of $-2g(-x) - 4$. First, we look to see how we get from $g(x)$ to $-2g(-x) - 4$:

\[
g(x) \xrightarrow{\text{Replace } x \text{ with } -x} g(-x) \xrightarrow{\text{Multiply by } -1} -g(-x) \xrightarrow{\text{Multiply by } 2} -2g(-x) \xrightarrow{\text{Subtract 4}} -2g(-x) - 4
\]

Now find out how the graph changes at each step:

\[
g(x) \xrightarrow{\text{Replace } x \text{ with } -x} g(-x) \xrightarrow{\text{Reflect } y\text{-axis}} g(-x) \xrightarrow{\text{Multiply by } -1} -g(-x) \xrightarrow{\text{Reflect } x\text{-axis}} -g(-x) \xrightarrow{\text{Multiply by } 2} 2g(-x) \xrightarrow{\text{Stretch by 2}} 2g(-x) \xrightarrow{\text{Subtract 4}} 2g(-x) - 4 \xrightarrow{\text{Move down 4}} -2g(-x) - 4
\]

These are the transformations, in order, which we need to do. The graphs are on the next page.
\[y = g(x) \]

\[(−2, 0) \quad (1, 1) \]

\[(−4, −2) \quad (0, −2) \]

\[y = g(−x) \]

\[(−1, 1) \quad (2, 0) \]

\[(0, −2) \quad (4, −2) \]

\[y = −g(−x) \]

\[(0, 2) \quad (4, 2) \]

\[(−1, −1) \quad (2, 0) \]

\[y = −2g(−x) \]

\[(0, 4) \quad (4, 4) \]

\[(−1, −2) \quad (2, 0) \]

\[y = −2g(−x) − 4 \quad \text{final answer} \]

\[(0, 0) \quad (4, 0) \]

\[(2, −4) \quad (−1, −6) \]
2. Let \(h(x) = \sqrt{2x + 3} \).

a. [5 pts] Find \(h(3) \).

\[
Answer: \quad h(3) = \sqrt{2(3) + 3} = \sqrt{9} = 3.
\]

b. [5 pts] What is the domain of \(h(x) \)?

Solution: The domain is all values of \(x \) which you can put into the formula for \(h(x) \). Since there is a radical (\(\sqrt{_} \)) sign, the expression under it must be at least 0. So \(2x + 3 \geq 0 \), which means that \(x \geq -\frac{3}{2} \). This is the domain, written as \(\left[-\frac{3}{2}, +\infty \right) \) in interval notation.

Grading: +3 points for the inequality \(2x + 3 \geq 0 \), +2 points for solving for \(x \). Grading for common mistakes: −3 points for \(x \geq -1 \).

c. [5 pts] Is \(h(x) \) even, odd, both, or neither?

Solution: To find out whether \(h(x) \) is even, odd, both, or neither, we need to calculate \(h(-x) \) and simplify it:

\[
h(-x) = \sqrt{2(-x) + 3} = \sqrt{-2x + 3}.
\]

This is neither \(h(x) = \sqrt{2x + 3} \), nor is it \(-h(x) = -\sqrt{2x + 3} \). So \(h(x) \) is neither odd or even.

Grading: +3 points for evaluating \(h(-x) \), +2 points for whether \(h(x) \) was even or odd. Grading for common mistakes: +2 points (total) for a right answer with no work.

d. [5 pts] What is the average rate of change of \(h(x) \) from \(x = 3 \) to \(x = 11 \)?

Solution: The average rate of change formula for \(h(x) \) from \(x = a \) to \(x = b \) is \(\frac{h(b) - h(a)}{b - a} \), which is

\[
\frac{h(11) - h(3)}{11 - 3} = \frac{\sqrt{2(11) + 3} - \sqrt{2(3) + 3}}{8} = \frac{5 - 3}{8} = \frac{1}{4}.
\]

Grading: +3 points for the rate of change formula, +2 points for evaluating it.

e. [5 pts] Write \(h(x) \) as the composition of two functions \(f(x) \) and \(g(x) \), neither of which is \(h(x) \).

(Make sure \((f \circ g)(x) = h(x) \).)

Solution: There are several ways to do this. Two pairs of functions that work are \(f(x) = \sqrt{x} \) and \(g(x) = 2x + 3 \); and \(f(x) = \sqrt{x + 3} \) and \(g(x) = 2x \).

Grading for common mistakes: −1 point if \(h(x) = (g \circ f)(x) \) instead of \(h(x) = (f \circ g)(x) \); −2 points for something close; +3 points (total) for \(f(\sqrt{x}) \) and \(g(2x + 3) \).
3. The value of \(R \) varies inversely with \(z \) and directly with \(w^3 \).

 a. [5 pts] Write down an equation which expresses the relationship between \(R \), \(z \), and \(w \).

 \[
 R = k \cdot \frac{1}{z} \cdot w^3 = \frac{kw^3}{z}.
 \]

 b. [5 pts] In the equation above, what is the value of the constant if \(R = 30 \) when \(z = 2 \) and \(w = 3 \)?

 Solution: We need to solve for \(k \). Substituting values for \(R \), \(z \) and \(w \), we get the equation

 \[
 30 = k \cdot \frac{1}{2} \cdot 3^3 = \frac{27}{2} k,
 \]

 so \(k = \frac{2}{27} \cdot 30 = \frac{20}{9} = 2.222.\)

 c. [5 pts] What is the value of \(R \) when \(z = 3 \) and \(w = 4 \)?

 Solution: Using the value of \(k \) from part (b.),

 \[
 R = k \cdot \frac{1}{3} \cdot 4^3 = \frac{20}{9} \cdot \frac{1}{3} \cdot 4^3 = \frac{1280}{27} = 47.407.
 \]

4. [10 pts] Is the graph below the graph of a function \(f(x) \)? Justify your answer.

 Solution: The picture was redrawn to make it clearer. This graph does not represent a function, because a vertical line can be drawn which crosses the graph in two points.

 Grading for common mistakes: +7 points (total) for Yes, and the “Vertical Line Test” or for the Horizontal Line Test.
5. [10 pts] Sketch the graph of the function \(f(x) = \begin{cases} x^2, & x < -1; \\ |x - 1|, & x \geq -1. \end{cases} \) Be sure to label any important points.

Solution: Below are the graphs of \(y = x^2 \) and \(y = |x - 1| \). The second one comes from the graph of \(y = |x| \) after shifting to the right by 1 unit.

We only want the part of the graph of \(y = x^2 \) when \(x < -1 \), which is to the left of the dashed line. Also, the only part of the graph \(y = |x - 1| \) we draw should be where \(x \geq -1 \). If we redraw these two pieces, we get the graph below.
6. Let $f(x) = 2x + 1$ and $g(x) = \lceil x + 0.5 \rceil$. Calculate the following:

a. [5 pts] $(f + g)(x)$

Solution: $(f + g)(x) = f(x) + g(x) = 2x + 1 + \lceil x + 0.5 \rceil$.

Grading for common mistakes: −3 points if $\lceil \rceil$ was replaced with parentheses () or brackets [].

b. [10 pts] $(f \circ g)(2.8)$

Solution: $(f \circ g)(2.8) = f(g(2.8)) = f(\lceil (2.8) + 0.5 \rceil) = f(\lceil 3.3 \rceil) = f(3) = 2(3) + 1 = 7$.

Grading: +5 points for writing the composition as $f(g(2.8))$, +5 points for evaluating the rest. Grading for common mistakes: −3 points for $f(x) \cdot f(x)$.

Fun fact: $g(x)$ is a function which simulates rounding to the nearest integer (rounding up if the number ends in .5).

c. [10 pts] $(f \circ f)(x)$

Solution: $(f \circ f)(x) = f(f(x)) = f(2x + 1) = 2(2x + 1) + 1 = 4x + 3$.

Grading for common mistakes: −8 points for $f(x) \cdot f(x)$; −5 points for $2x(2x + 1) + 1$.