Solution by Christopher Carl Heckman, Arizona State University, Tempe, AZ:

Theorem 1. The chromatic number of M_n is

$$\mu_n = \left\lfloor \frac{7 + \sqrt{134064 \cdot 20^n + 242592 \cdot 8^n - 358967}}{2} \right\rfloor.$$

This solution requires the use of a published result:

Theorem 2. (Ringel, Youngs) The chromatic number of the orientable surface of genus g is

$$\left(\frac{7 + \sqrt{48g + 1}}{2}\right).$$

Since the Euler characteristic of an orientable surface of genus g is $2 - 2g$, it suffices to find the Euler characteristic of M_n (which will be denoted μ_n; the Euler characteristic of an arbitrary set A will be denoted $\chi(A)$). We will need another result, about the Euler characteristic of the Sierpinski Gasket.

Definition. Let the stage-n Sierpinski Gasket be S_n, defined as follows: S_0 is defined to be the unit square, and given S_{n-1}, construct S_n by drilling each of the 8^{n-1} sub-squares of edge-length 3^{1-n} in S_{n-1}. The Euler characteristic of S_n will be denoted γ_n.

Lemma 3. The Euler characteristic of S_n is $\gamma_n = \frac{16}{7} - \frac{2}{7} \cdot 8^n$.

Proof of Lemma 3. The genus of S_n is equal to the number of “holes” in S_n, which is $1 + 8 + 8^2 + \ldots + 8^{n-1} = \frac{8^n - 1}{7}$. The Euler characteristic of S_n is thus $2 - 2 \cdot \frac{8^n - 1}{7} = \frac{16}{7} - \frac{2}{7} \cdot 8^n$.

Lemma 4. The Euler characteristic of M_n, μ_n, satisfies the recurrence:

$$\begin{align*}
\mu_0 &= 2, \\
\mu_{n+1} &= 20 \mu_n - \frac{384}{7} + \frac{48}{7} \cdot 8^n, \quad n \geq 0.
\end{align*}$$

(\ast)

Proof of Lemma 4. Clearly $\mu_0 = 2$. Now suppose $n \geq 1$.

We will view M_{n+1} as 20 copies of M_n, consisting of eight “corner cubes” (each adjacent to three other copies of M_n) and twelve “edge cubes” (each adjacent to two other copies of M_n). Fix n, and let N_0 consist of the eight corner cubes of M_{n+1}, and for each k between 1 and 12, let N_k be the union of N_{k-1} and one of the edge cubes not in N_{k-1}. (It does not matter which one in particular.) Thus $N_{12} = M_{n+1}$.

Since N_0 is the union of eight pairwise disjoint copies of M_n, the Euler characteristic of N_0 is $8 \cdot \mu_n$. Now pick a k between 1 and 12. N_k is the union of N_{k-1} and a copy of M_n. The Euler characteristic satisfies the following inclusion-exclusion equality:

$$\chi(A \cup B) = \chi(A) + \chi(B) - \chi(A \cap B).$$

Since the intersection of N_{k-1} and the new copy of M_n is two disjoint copies of S_n,

$$\chi(N_k) = \chi(N_{k-1} \cup M_n) = \chi(N_{k-1}) + \chi(M_n) - \chi(N_{k-1} \cap M_n) = \chi(N_{k-1}) + \mu_n - \chi(2S_n) = \chi(N_{k-1}) + \mu_n - 2 \gamma_n.$$

Repeated iteration of this equality, with an application of Lemma 3, yields

$$\mu_{n+1} = \chi(M_{n+1}) = \chi(N_{12}) = \chi(N_0) + 12 \mu_n - 24 \gamma_n = 8 \mu_n + 12 \mu_n - 24 \left(\frac{16}{7} - \frac{2}{7} \cdot 8^n\right),$$

1
which is equivalent to what we wanted to show.

Now we can prove Theorem 1. First, we solve the recurrence given by Lemma 4. This is a linear non-homogeneous recurrence with constant coefficients, and it can be solved using methods found in any introductory combinatorics book, such as Rosen’s *Discrete Mathematics and Its Applications*.

Briefly, we first solve the homogeneous recurrence $h_{n+1} = 20h_n$ (the recurrence \ast, without the terms not involving μ); it is easy to see that a solution is of the form $h_n = C_1 \cdot 20^n$. Then we look for one particular solution to the recurrence

$$p_{n+1} = 20p_n - \frac{384}{7} + \frac{48}{7} \cdot 8^n,$$

by looking for a solution of the form

$$p_n = C_2 \cdot 1^n + C_3 \cdot 8^n.$$

It turns out that $C_2 = \frac{384}{133}$ and $C_3 = -\frac{4}{7}$ makes p_n satisfy \ast, so

$$p_n = \frac{384}{133} - \frac{4}{7} \cdot 8^n.$$

Then any solution to \ast is of the form

$$\mu_n = h_n + p_n = C_1 \cdot 20^n + \frac{384}{133} - \frac{4}{7} \cdot 8^n,$$

and all we need to do is to choose C_1 so that $\mu_0 = 2$. To have this, we must have $C_1 = -\frac{6}{19}$, so

$$\mu_n = -\frac{6}{19} \cdot 20^n + \frac{384}{133} - \frac{4}{7} \cdot 8^n.$$

Now we substitute $g = \frac{2 - \mu_n}{2}$ into the formula given in Theorem 2, and obtain Theorem 1 after simplifying.

The solver proposes the following conjecture:

Conjecture. This problem was inspired by the confusion between the notations for chromatic number and Euler characteristic.