Section 1.3 - 30, 54, 55, 57

30) First note that the domain of \(f + g \) is the intersection of the domains of \(f \) and \(g \); that is \(f + g \) is only defined where both \(f \) and \(g \) are defined. Taking the horizontal and vertical units of length to be the distance between successive vertical and horizontal gridlines, we can make a table of approximate values as follows:

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-1</td>
<td>2.2</td>
<td>2.0</td>
<td>2.4</td>
<td>2.7</td>
<td>2.7</td>
<td>2.3</td>
</tr>
<tr>
<td>(g(x))</td>
<td>1</td>
<td>-1.3</td>
<td>-1.2</td>
<td>-0.6</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>(f(x) + g(x))</td>
<td>0</td>
<td>0.9</td>
<td>0.8</td>
<td>1.8</td>
<td>3.0</td>
<td>3.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Extra values of \(x \) (like the value 2.5 in the table above) can be added as needed.

54)
(a) \(f(g(1)) = f(6) = 5 \)
(b) \(g(f(1)) = g(3) = 2 \)
(c) \(f(f(1)) = f(3) = 4 \)
(d) \(g(g(1)) = g(6) = 3 \)
(e) \((g \circ f)(3) = g(f(3)) = g(4) = 1 \)
(f) \((f \circ g)(6) = f(g(6)) = f(3) = 4 \)

55)
(a) \(g(2)=5 \) because the point (2,5) is on the graph of \(g \). Thus, \(f(g(2)) = f(5) = 4 \), because the point (5,4) is on the graph of \(f \).

(b) \(g(f(0)) = g(0) = 3 \)
(c) \((f \circ g)(0) = f(g(0)) = f(3) = 0 \)
(d) \((g \circ f)(6) = g(f(6)) = g(6) \).

This value is not defined because there is no point on the graph of \(g \) that has \(x \)-coordinate 6.

(e) \((g \circ g)(-2) = g(g(-2)) = g(1) = 4 \)
(f) \((f \circ f)(4) = f(f(4)) = f(2) = -2 \)

57)
(a) Using the relationship distance = rate * time with the radius \(r \) as the distance, we have \(r(t) = 60t \).

(b) \(A = \pi r^2 \Rightarrow (A(t)) = \pi(60t)^2 = 3600\pi t^2 \). This formula gives us the extent of the rippled area (in cm²) at any time \(t \).