The analytic function \(z \rightarrow \frac{z+1/z}{2} \).

Rochus Boerner

November 9, 2007

Definitions: Let \(f : \mathbb{C} - \{0\} \rightarrow \mathbb{C} \) be defined by

\[
f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right)
\]

Also let \(D \) be the open unit disk, \(H^+ \) the upper half plane, \(H^- \) the lower half plane and \(D^+ = D \cap H^+, \) \(D^- = D \cap H^- \).

Result: \(f \) maps \(D^+ \) 1-1 onto \(H^- \) and \(D^- \) 1-1 onto \(H^+ \).

Proof: Let \(z \in \mathbb{C} - \{0\} \) be given by its polar representation \(z = re^{i\phi} \), \(0 < r, \) \(0 \leq \phi < 2\pi \). Then

\[
f(z) = \cos \phi \frac{r + \frac{1}{r}}{2} + i \sin \phi \frac{r - \frac{1}{r}}{2}
\]

This shows that \(f(z) \) is real if and only if \(z \) is on the unit circle \(|z| = 1\) or real.

If \(r < 1 \) and \(0 < \phi < \pi \), then \(r - \frac{1}{r} < 0 \) and \(\sin \phi > 0 \), so the imaginary value of \(f(z) \) is negative. This shows that \(f \) maps \(D^+ \) into \(H^- \). Likewise, one shows that \(f \) maps \(D^- \) into \(H^+ \).

It is now shown that \(f \) is onto. Let \(w \in H^- \) and let \(\sqrt{\cdot} \) be the standard branch of the square root function defined on the ”slit plane” \(\mathbb{C}^* = \mathbb{C} - (-\infty, 0] \):

\[
\sqrt{re^{i\phi}} = \sqrt{r}e^{i\phi/2}
\]

Let

\[
z_1 = w + \sqrt{w^2 - 1}
\]
\[
z_2 = w - \sqrt{w^2 - 1}
\]
These are well-defined since $w^2 - 1 \notin \mathbb{R}$ for $w \in H^-$. It is $z_1z_2 = 1$ and

\[(z - z_1)(z - z_2) = (z - (w + \sqrt{w^2 - 1}))(z - (w - \sqrt{w^2 - 1})) = z^2 - 2w + 1\]

Thus the z_i solve $z^2 + 1 = 2w$ and since they are nonzero, they solve $z + \frac{1}{z} = 2w$. Hence $f(z_i) = w$. Since w is not real, neither z_i can be on the unit circle. Since $z_1z_2 = 1$ and $|z_i| \neq 1$, $z_j \in D$ for exactly one $j \in \{1, 2\}$. But f maps D^- into H^+ and $(D \cap \mathbb{R}) - \{0\}$ into \mathbb{R}; since $f(z_j) = w \in H^-$, z_j must be in D^+. This shows that f maps D^+ onto H^-.

Since the equation $f(z) = w$ is equivalent to a quadratic equation, each $w \in H^-$ can at most have 2 preimages under f. Therefore, $f(z) = w$ only for $z = z_1$ or $z = z_2$. Since the z_i with $i \neq j$ is not in D, f as a map from D^+ to H^- is 1-1.

Since $f(\overline{z}) = \overline{f(z)}$ for all $z \in \mathbb{C} - \{0\}$, f maps D^- 1-1 onto H^+.