Four billionaires – Burns, Gates, Scrooge and Jones – play the following game:

In each round, Burns gives 10% of his money to Gates, 21% to Scrooge, and 19% to Jones. Gates gives 25% of his money to Burns, 43% to Scrooge, and 12% to Jones. Scrooge gives 28% of his money to Burns, 18% to Gates and 32% to Jones. Jones gives 41% of his money to Burns, 17% to Gates and 19% to Scrooge.

All of this happens simultaneously, so all the percentages are based on what they have at the beginning of each round.

A. Suppose \(x = (x_1, x_2, x_3, x_4)^T \) is what Burns, Gates, Scrooge and Jones have at the beginning of a round, and \(y = (y_1, y_2, y_3, y_4)^T \) is what they have after they are finished exchanging money. The matrix \(A \) that describes this transition, i.e. \(Ax = y \)

\[
A = \begin{pmatrix}
0.5 & 0.25 & 0.28 & 0.41 \\
0.1 & 0.2 & 0.18 & 0.17 \\
0.21 & 0.43 & 0.22 & 0.19 \\
0.19 & 0.12 & 0.32 & 0.23 \\
\end{pmatrix}
\]

B. Using the MATLAB command \texttt{eig} , find both \(D \) (the diagonalized version of \(A \)) and the diagonalizing matrix \(U \):

\[
>> [U, D] = \text{eig}(A)
\]

C. Extract the first column of \(U \) into a vector \(x_1 \) and confirm that \(x_1 \) is an eigenvector by computing \(Ax_1 \).

Why would one call \(x_1 \) and its multiples the equilibrium states of the game?

D. Consider the second, third and fourth columns of \(U \). Do they describe valid states of the game?

E. Recall that if \(x \) is an initial wealth distribution, \(A^n x \) is the wealth distribution after \(n \) rounds of the game. We saw in the first part of this project that no matter what \(x \) is, as \(n \) increases to infinity, \(A^n x \) will settle into a steady state, which is always a multiple of \(x_1 \). Use your knowledge of eigenvalues and eigenvectors to explain this phenomenon.

F. If the sum of the initial wealth was $100,000, what is the steady state wealth distribution? Generalize to an arbitrary initial sum \(W \).

Hint: remember the \texttt{sum} command.