1. Given that \(g(x) = \sqrt{x + 1} \) find and simplify the difference quotient \(\frac{g(x + h) - g(x)}{h} \), when \(h \neq 0 \).

A. 1 B. \(\frac{1}{\sqrt{x + 1} + \frac{h}{\sqrt{x + 1}}} \) C. \(\sqrt{x + 1}(x - 1) \) D. \(\frac{\sqrt{x + 1}(x + h - 1)}{h} \) E. None of these

2. Given \(f(x) = x^2 + 1 \) and \(g(x) = 5x - 3 \), find and simplify \((f \circ g)(x)\).

A. \(25x^2 - 30x + 10 \) B. \(25x^2 - 9 \) C. \(25x^2 + 9 \) D. \(5x^3 - 3x^2 + 5x - 3 \) E. None of these

3. Solve \(x^3 - 3x^2 + 4x - 2 = 0 \).

A. \(x = 1, -2 \) B. \(x = 2 \) C. \(x = 1 \pm i \) D. \(x = 1, 1 \pm i \) E. None of these

4. Find the domain of \(h(x) = \sqrt{10 - x} \).

A. \((10, \infty)\) B. \((-\infty, \infty)\) C. \((-\infty, 10]\) D. \([10, \infty)\) E. None of these

5. Find the function that results from applying the following transformations to \(g(x) = x^3 \): Reflect about the \(x \)-axis, shift left 2 units and shift down 3 units

A. \(-(x + 2)^3 - 3 \) B. \((x + 2)^3 + 3 \) C. \(-(x - 3)^3 + 2 \) D. \(-(x + 3)^3 - 2 \) E. None of these

6. Given that \(\sin(t) = \frac{5}{13} \), with \(t \) in quadrant II, find \(\tan(t) \)

A. \(\tan(t) = \frac{5}{12} \) B. \(\tan(t) = -\frac{5}{12} \) C. \(\tan(t) = \frac{12}{13} \) D. \(\tan(t) = \frac{12}{13} \) E. None of these
7. Suppose that a rabbit population in thousands is modeled by \(f(x) = \frac{5x + 1}{2x + 10} \) where \(x \geq 0 \) is years.
What does the population tend to in the long run?

A. 500 rabbits
B. infinity
C. 0 rabbits
D. 2500 rabbits
E. None of these

8. Identify the curve \(f(x) = \sqrt{9 - x^2} \)

A. After simplification, this is the straight line \(f(x) = 3 - x \)
B. There is no established name for this curve.
C. It's a parabola that opens downward.
D. It's a circle with radius 3.
E. It's a hyperbola.

9. Pick the correct identity.

A. \((a + b)^2 = a^2 + b^2\)

B. \(\frac{a + b + c}{c} = a + b \)

C. \(\frac{a + b + c}{c} = a + b + 1 \)

D. \(\ln(ab) = \ln(a) + \ln(b) \)

E. \(\frac{1}{a + b} = \frac{1}{a} + \frac{1}{b} \)

10. If \(f(x) = 3x + 1 \) then

A. \(f^{-1}(x) = 3x \)

B. \(f^{-1}(x) = \frac{1}{3x + 1} \)

C. \(f^{-1}(x) = \frac{1}{3}(x - 1) \)

D. \(f^{-1} \) does not exist

E. none of these.