PROOF BY INDUCTION

Homework problems are due in writing on Monday, June 23rd.

IN-CLASS EXERCISES

Prove all of the following statements using induction.

1. The sum of the first \(n \) positive odd integers is \(n^2 \).

2. \(1^2 + 2^2 + \cdots + n^2 = \frac{1}{6}n(n + 1)(2n + 1) \) for all natural numbers \(n \).

3. For all \(n \in \mathbb{N} \), the number \(6^n + 4 \) is divisible by 5.

4. \(n^2 > 2n + 1 \) for all natural numbers \(n \geq 3 \).

5. \(2^n > n^2 \) for all natural numbers \(n \geq 5 \).

HOMEWORK PROBLEMS

6. Find a natural number \(k \) such that for all natural numbers \(n \geq k \), the inequality \(2^n > n^3 \) holds. Prove your answer.

7. Show that \(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n} \) for all natural numbers \(n \).