EQUIVALENCE RELATIONS

Homework problems are due in writing on Wednesday, June 18th.

IN-CLASS EXERCISES

1. Let \(X = \{1, 2, 3, 4\} \). Are the following relations equivalence relations on \(X \)? If yes, what are the equivalence classes? If no, which conditions are violated? Justify your answers.
 a. \(R = \{(1, 2), (2, 1)\} \)
 b. \(R = \{(1, 1), (2, 2), (1, 2), (2, 1)\} \)
 c. \(R = \{(1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (3, 4)\} \)
 d. \(R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 4), (4, 1), (2, 4), (4, 2)\} \)

2. Are the following equivalence relations on the real numbers?
 a. \(x \sim y \) iff \(\exists n \in \mathbb{Z} \) such that \(x, y \in [n, n + 1) \). If yes, describe the equivalence classes. If no, say why.
 b. \(x \sim y \) iff \(\exists n \in \mathbb{Z} \) such that \(x, y \in [n, n + 1] \). If yes, describe the equivalence classes. If no, say why.
 c. \(x \sim y \) iff \(\exists n \in \mathbb{Z} \) such that \(x, y \in (n, n + 1) \). If yes, describe the equivalence classes. If no, say why.

3. Is the following relation an equivalence relation on the points of the plane \(\mathbb{R}^2 \)? Two points are equivalent if and only if their distance is less than 1.

HOMEWORK PROBLEMS

4. Prove that the following is an equivalence relation: two natural numbers \(a, b \) are equivalent if and only if there are natural numbers \(p, q \) such that \(a^p = b^q \).

5. Prove that the following is an equivalence relation: two real numbers are equivalent if and only if their difference is rational. Give an example of an equivalence class. Are there countably or uncountably many equivalence classes?