1. Examples of cryptosystems:

- **Shift**: \(\mathcal{P} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_n \), \(e_K(x) = x + K \), \(d_K(y) = y - K \), \(|\mathcal{P}| = |\mathcal{C}| = |\mathcal{K}| = n\)

- **Affine**: \(\mathcal{P} = \mathcal{C} = \mathbb{Z}_n \), \(\mathcal{K} = \{(a, b) | a, b \in \mathbb{Z}_n, \gcd(a, n) = 1\} \), \(e_K(x) = ax + b \), \(d_K(y) = a^{-1}(y - b) \), \(|\mathcal{P}| = |\mathcal{C}| = n \), \(|\mathcal{K}| = \phi(n)n \) (In particular \(\phi(26) = 12 \))

- **Substitution**: \(\mathcal{P} = \mathcal{C} = \mathbb{Z}_n \), \(\mathcal{K} \) - all permutations of \(\mathbb{Z}_n \), \(e_\pi(x) = \pi(x) \), \(d_\pi(y) = \pi^{-1}(y) \), \(|\mathcal{P}| = |\mathcal{C}| = n \), \(|\mathcal{K}| = n!\)

- **Vigenere**: \(\mathcal{P} = \mathcal{C} = \mathbb{Z}_n^m \), \(\mathcal{K} \) - \((Z_n)^m\), \(e_K(x) = x + K \), \(d_K(y) = y - K \), \(|\mathcal{P}| = |\mathcal{C}| = n^m \), \(|\mathcal{K}| = n^m \)

- **Hill**: \(\mathcal{P} = \mathcal{C} = (\mathbb{Z}_n)^m \), \(\mathcal{K} \) - set of \(m \times m \) invertible matrices over \(\mathbb{Z}_n \), \(e_K(x) = xK \), \(d_K(y) = yK^{-1} \), \(|\mathcal{P}| = |\mathcal{C}| = n^m \), \(|\mathcal{K}| \leq n^{m^2} \) (when \(n \) is prime, \(\prod_{i=0}^{m-1}(p^m - p^i) \))

2. Friedman’s Test:

- The index of coincidence \(I_c(x) = \sum \frac{f_i(f_i-1)}{n(n-1)} \approx \sum p_i^2 \) and how to use it to attack Vigenere Cipher.

- \(M_g = \sum \frac{n_i k_i + a_i}{n} \), \(n' = n/m \) and how to use it to guess a key in Vigenere Cipher.

3. Basic Probability:

- Conditional probability.

- Bayes’ Theorem.

4. Perfect Secrecy:

- Check if a cryptosystem has perfect secrecy (compute conditional probabilities).

- Shift, Affine (check directly that they have perfect secrecy).

- Characterization of cryptosystems with perfect secrecy (when \(|\mathcal{P}| = |\mathcal{C}| = |\mathcal{K}| \) *with a proof*).
• **One-time pad**: \(\mathcal{P} = \mathcal{C} = \mathcal{K} = (Z_2)^n \), \(e_K(x) = x + K, d_K(y) = y + K, |\mathcal{P}| = |\mathcal{C}| = |\mathcal{K}| = 2^n \)

5. **Entropy function**:

• Entropy function and conditional entropies.
• Find entropies of random variables.
• Find \(H(\mathcal{P}), H(\mathcal{C}), H(\mathcal{K}|\mathcal{C}), H(\mathcal{P}|\mathcal{C}) \) in a given cryptosystem.
• Properties of the entropy function.
• Formula for the equivocation: \(H(\mathcal{K}|\mathcal{C}) = H(\mathcal{K}) + H(\mathcal{P}) - H(\mathcal{C}) \) (with a proof)
• Unicity distance, and the average number of spurious keys.

6. **Euclidean Algorithm and Chinese Remainder Theorem**

• **Extended Euclidean Algorithm**: \(r_i = s_i a + t_i b \) and \(s_0 = 1, s_1 = 0, t_0 = 0, t_1 = 1 \) and \(s_i = s_{i-2} - q_{i-1}s_{i-1}, t_i = t_{i-2} - q_{i-1}t_{i-1} \).
• Finding the inverse of \(a \) in \(Z_n \)
• Solving system of congruences \(x_i \equiv a_i \pmod{m_i} \) by \(x = \sum_i a_i M_i y_i \pmod{M} \) where \(M = \prod m_i, M_i = M/m_i, y_i = M_i^{-1} \pmod{m_i} \).
• Why is the solution to the system unique?

7. **Facts and concepts from number theory and RSA**

• Lagrange Theorem, Fermat Theorem.
• Order of an element in a group, primitive element, quadratic residue.
• When \(b = \alpha^i \) is primitive if \(\alpha \) is primitive? How to check if \(\alpha \) is primitive? How to find a primitive element in \(\mathbb{Z}_p^* \) (Theorem 5.8).
• RSA including the fact that \(e_K \) and \(d_K \) are inverses of one another.

8. **Primality testing**

• Legendre and Jacobi symbols.
• Solovay-Strassen Algorithm and the fact that if \(p \) is prime then the algorithm returns ”prime”.

2
• Miller-Rabin Algorithm and the fact that if p is prime then the algorithm returns "prime".

9. **Pollard Algorithms**

• $p - 1$ factoring algorithm. Under what assumptions and why will it work?

10. **Discrete Logarithm Problem**

• **ElGamal Public-key cryptosystem:** $\mathcal{P} = \mathbb{Z}_p^*$, $\mathcal{C} = \mathbb{Z}_p^* \times \mathbb{Z}_p^*$, $\mathcal{K} = \{(p, \alpha, k, \beta) | \beta = \alpha^k, e_K(x, r) = (y_1, y_2) \text{ with } y_1 = \alpha^r, y_2 = x\beta^r, d_K(y_1, y_2) = y_2(y_1^k)^{-1}\}.$

11. **Finite fields**

12. **Elliptic curves over reals and \mathbb{Z}_p**