Cryptography
Review for Final

1. Examples of cryptosystems:
 - **Shift**: \(\mathcal{P} = \mathcal{C} = \mathcal{K} = Z_n \), \(e_K(x) = x + K, d_K(y) = y - K \), \(|\mathcal{P}| = |\mathcal{C}| = |\mathcal{K}| = n\)
 - **Affine**: \(\mathcal{P} = \mathcal{C} = Z_n \), \(\mathcal{K} = \{(a, b) | a, b \in Z_n, \gcd(a, n) = 1\} \), \(e_K(x) = ax + b, d_K(y) = a^{-1}(y - b) \), \(|\mathcal{P}| = |\mathcal{C}| = n, |\mathcal{K}| = \phi(n)n \) (In particular \(\phi(26) = 12 \))
 - **Substitution**: \(\mathcal{P} = \mathcal{C} = Z_n \), \(\mathcal{K} \) - all permutations of \(Z_n \), \(e_\pi(x) = \pi(x), d_\pi(y) = \pi^{-1}(y) \), \(|\mathcal{P}| = |\mathcal{C}| = n, |\mathcal{K}| = n! \)
 - **Vigenere**: \(\mathcal{P} = \mathcal{C} = \mathcal{K} = (Z_n)^m \), \(e_K(x) = x + K, d_K(y) = y - K \), \(|\mathcal{P}| = |\mathcal{C}| = |\mathcal{K}| = n^m \)
 - **Hill**: \(\mathcal{P} = \mathcal{C} = (Z_n)^m \), \(\mathcal{K} \) - set of \(m \times m \) invertible matrices over \(Z_n \), \(e_K(x) = xK, d_K(y) = yK^{-1} \), \(|\mathcal{P}| = |\mathcal{C}| = n^m, |\mathcal{K}| \leq n^{m^2} \) (when \(n \) is prime, \(\prod_{i=0}^{m-1}(p^m - p^i) \))

2. Friedman’s Test:
 - The index of coincidence \(I_c(x) = \sum \frac{f_i(f_i-1)}{n(n-1)} \approx \sum p_i^2 \) and how to use it to attack Vigenere Cipher.
 - \(M_g = \sum \frac{n_i}{n} - n' = n/m \) and how to use it to guess a key in Vigenere Cipher.

3. Basic Probability:
 - Conditional probability.
 - Bayes’ Theorem.

4. Perfect Secrecy:
 - Check if a cryptosystem has perfect secrecy (compute conditional probabilities).
 - Shift, Affine (check directly that they have perfect secrecy).
 - Characterization of cryptosystems with perfect secrecy (when |\(\mathcal{P} | = |\mathcal{C}| = |\mathcal{K}| \)) (with a proof).
• One-time pad: $P = C = K = (\mathbb{Z}_2^n)$, $e_K(x) = x + K$, $d_K(y) = y + K$, $|P| = |C| = |K| = 2^n$

5. Entropy function:
 • Entropy function and conditional entropies.
 • Find entropies of random variables.
 • Find $H(P)$, $H(C)$, $H(K|C)$, $H(P|C)$ in a given cryptosystem.
 • Properties of the entropy function.
 • Formula for the equivocation: $H(K|C) = H(K) + H(P) - H(C)$. (with a proof)

6. Euclidean Algorithm and Chinese Remainder Theorem
 • Extended Euclidean Algorithm: $r_i = s_i a + t_i b$ and $s_0 = 1, s_1 = 0, t_0 = 0, t_1 = 1$ and $s_i = s_{i-2} - q_{i-1} s_{i-1}, t_i = t_{i-2} - q_{i-1} t_{i-1}$.
 • Finding the inverse of a in \mathbb{Z}_n
 • Solving system of congruences $x_i \equiv a_i \pmod{m_i}$ by $x = \sum_i a_i M_i y_i \pmod{M}$ where $M = \prod m_i$, $M_i = M/m_i$, $y_i = M_i^{-1} \pmod{m_i}$.
 • Why is the solution to the system unique?

7. Facts and concepts from number theory and RSA
 • Lagrange Theorem, Fermat Theorem. (with proofs)
 • Order of an element in a group, primitive element, quadratic residue.
 • When $b = \alpha^i$ is primitive if α is primitive? How to check if α is primitive? How to find a primitive element in \mathbb{Z}_p^* (Theorem 5.8).
 • RSA including the fact that e_K and d_K are inverses of one another (with a proof)

8. Primality testing
 • Legendre and Jacobi symbols.
 • Euler’s Theorem. (with a proof)
 • Solovay-Strassen Algorithm and the fact that if p is prime then the algorithm returns ”prime”. (with a proof)
• Miller-Rabin Algorithm and the fact that if p is prime then the algorithm returns ”prime”. (with a proof)

9. Pollard Algorithms

• $p - 1$ factoring algorithm. Under what assumptions and why will it work?

10. Discrete Logarithm Problem

• ElGamal Public-key cryptosystem: $\mathcal{P} = \mathbb{Z}_p^*$, $\mathcal{C} = \mathbb{Z}_p^* \times \mathbb{Z}_p^*$, $\mathcal{K} = \{(p, \alpha, k, \beta) | \beta = \alpha^k, e_K(x, r) = (y_1, y_2) \text{ with } y_1 = \alpha^r, y_2 = x^r, d_K(y_1, y_2) = y_2(\beta^k)^{-1}\}$.

11. Finite fields

• Irreducible polynomials and division of polynomials mod $f(x)$.
• Construction of finite fields.

12. Elliptic curves over reals and \mathbb{Z}_p

• $\lambda = (y_2 - y_1)(x_2 - x_1)^{-1}$ when $x_1 \neq x_2$ and $\lambda = (3x_1^2 + a)(2y_1)^{-1}$ when $x_1 = x_2$ and $y_1 \neq 0$.
• $x_3 = \lambda^2 - x_1 - x_2, y_3 = \lambda(x_1 - x_3) - y_1$ or $(x_3, y_3) = \mathcal{O}$ if $x_1 = x_2, y_1 = -y_2$.

3