Linear Programming

Lecture 3

A. Czygrinow

Department of Mathematics
Arizona State University
Pitfalls

- Initialization
- Iteration
- Termination
Initialization

We will discuss in more details later on.

Now we assume our problems have *feasible origin* -

\[x_1 = x_2 = \cdots = x_n = 0 \]

is a feasible solution *iff* all \(b_i \)'s are nonnegative.
Iteration

Fact 1 *If there is no candidate for entering variable then the solution is optimal.*

Fact 2 *If there is no candidate for a leaving variable then the problem is unbounded.*
Degeneracy

Basic solutions with with one or more basic variable at zero are called \textit{degenerate}.

Simplex iterations that do not change solutions are called \textit{degenerate}.
Termination

Cycling - if after iterations you arrive at the same dictionary.

Theorem 3 *If the simplex method fails to terminate then it must cycle.*
Avoiding cycling

- Perturbation method and lexicographic rule.

Theorem 4 The simplex method terminates as long as leaving variable is selected by the lexicographic rule.

- Smallest subscript rule.

Theorem 5 The simplex method terminates if entering and leaving variables are selected using the smallest subscript rule.