Linear Programming

Lecture 20

A. Czygrinow

Department of Mathematics
Arizona State University
Caterer problem

Caterer must provide fresh napkins over a period of \(n \) days. Let \(d_j \) denote the number of napkins required on the \(j \)th day. Caterer has the following choices:

- buy new napkins - \(a \) cents apiece
- launder napkins using fast service - napkins are returned \(q \) days later. Cost is \(b \) cents apiece.
- launder napkins using slow service - napkins are returned \(p \) days later. Cost is \(c \) cents apiece.

Assume \(p > q, a > b > c \).
How to solve it?

Consider the network with nodes for

- demands of napkins
- store (with many fresh napkins)
- nodes that correspond to laundered napkins (one for each day with supply of the demand for that day)
- inventory (with unused napkins)

and arcs from store to demand-nodes, from laundered-napkins-nodes to demand-nodes. The costs on arcs are defined a, b or c accordingly to what type of arc it is.
so how to solve it?

Once, we have the network, we can apply the network simplex algorithm. There is a small problem though.

The solution can have values which are not integers. (Clearly caterer cannot buy 1/10 of a napkin).
Integrality Theorem

Theorem 1 Consider a transshipment problem:
minimize cx subject to $Ax = b$, $x \geq 0$
such that all components of b are integers. If the problem has at least one feasible solution then it has an integer-valued feasible solution. If it has an optimal solution then it has an integer-valued optimal solution.
Application

Theorem 2 If in a set of n girls and n boys every girl knows k boys and every boy knows exactly k girls then n marriages can be arranged with everybody knowing her or his spouse.