Linear Programming

Lecture 10

A. Czygrinow

Department of Mathematics
Arizona State University
The slackness theorem

Theorem 1 Let x_1^*, \ldots, x_n^* be a feasible solution to the primal and y_1^*, \ldots, y_m^* be a feasible solution to the dual. Necessary and sufficient conditions for simultaneous optimality of x_1^*, \ldots, x_n^* and y_1^*, \ldots, y_m^* are

1. $\sum_{i=1}^{m} a_{ij} y_i^* = c_j$ or $x_j^* = 0$, $j = 1, \ldots, n$
2. $\sum_{j=1}^{n} a_{ij} x_j^* = b_i$ or $y_i^* = 0$, $i = 1, \ldots, m$
Another version

Theorem 2 A feasible solution x_1^*, \ldots, x_n^* of the primal is optimal if and only if there exist numbers y_1^*, \ldots, y_m^* such that

1. • if $x_j^* > 0$ then $\sum_{i=1}^{m} a_{ij} y_i^* = c_j$
 • if $\sum_{j=1}^{n} a_{ij} x_j^* < b_i$ then $y_i^* = 0$

2. • $\sum_{i=1}^{m} a_{ij} y_i^* \geq c_j$, $j = 1, \ldots, n$
 • $y_i^* \geq 0$, $i = 1, \ldots, m$
Unique solution of (1)

Theorem 3 If x_1^*, \ldots, x_n^* is a nondegenerate basic feasible solution of the primal then the system in (1) of Theorem 2 has a unique solution.