1. Find an optimal global alignment of $s = AACAG$ with $t = ATCCGA$ and scores 3 for match and -2 for mismatch but with the gap penalty function $\gamma(g) = -2 - g$.

2. Repeat the previous one for another pair, say $s = ACGA$ and $t = TATA$, keeping the same scores.

3. Show the following facts. Let n be the length of one string, m the length of another.

 • Time complexity of the global alignment algorithm with a linear gap penalty function is $\Theta(nm)$.
 • Time complexity of the global alignment algorithm with an affine gap penalty function is $\Theta(nm)$.
 • Time complexity of the global alignment algorithm with a "general" gap penalty function is $\Theta(nm(n + m))$.

4. Let $s = ACAGT$ and $t = AAACAGGTATATGCAT$ with scores 3 for match and -2 for mismatch and use the linear gap penalty with $\gamma(g) = -3g$. Find an optimal semi-global alignment of s with t.

5. Assume the probability distribution for DNA characters is uniform, i.e. $p(A) = p(C) = p(G) = p(T) = 0.25$ and consider the local alignment problem. Check if given functions are proper scoring functions for the problem (Provide explanation):

 • 2 for match, -1 for mismatch, $\gamma(g) = -g$.
 • -1 for match, -7 for mismatch, $\gamma(g) = -2g$.
 • 11 for match, -1.5 for mismatch, $\gamma(g) = -g$.