1. Let \(s = AACGAT \) and \(t = ACTCT \). Let scores be 3 for match an -2 for mismatch and use the gap penalty function \(\gamma(g) = -3g \). Find an optimal global alignment of \(s \) with \(t \).

2. Let \(s = AACAGTATCGCT \) and \(t = CAGGTAT \). Let scores be 3 for match an -2 for mismatch and use the gap penalty function \(\gamma(g) = -g \). Find an optimal local alignment of \(s \) with \(t \).

3. Let \(s = PHAAWAE \) and \(t = APEAWE \). Use the gap penalty function \(\gamma(g) = -3g \) and the scores from Example 42 in Notes to find
 - an optimal global alignment of \(s \) and \(t \),
 - an optimal local alignment of \(s \) and \(t \).

4. Find an optimal global alignment of \(PHAWE \) with \(HHWAWE \). Use the gap penalty function \(\gamma(g) = -4g \) and PAM250 as a scoring matrix.

5. Repeat the previous exercise with local instead of global alignment.

6. Find an optimal global alignment of \(s = AACAG \) with \(t = ATCCGA \) and scores 3 for match and -2 for mismatch but with the gap penalty function \(\gamma(g) = -2 - g \).

7. Repeat the previous one for another pair of strings (your choice) keeping the same scores.