Alignment

1. Let \(s = AACGAT \) and \(t = ACTCT \). Let scores be 2 for match an -2 for mismatch and use the linear gap penalty with \(d = 3 \). Find an optimal global alignment of \(s \) with \(t \).

2. Let \(s = AACAGTATCGCT \) and \(t = CAGGTAT \). Let scores be 2 for match an -2 for mismatch and use the linear gap penalty with \(d = 3 \). Find an optimal local alignment of \(s \) with \(t \).

3. Let \(s = ACAGT \) and \(t = AAACAGGTATATGTCACT \) with scores 2 for match an -2 for mismatch and use the linear gap penalty with \(d = 3 \). Find an optimal semi-global alignment of \(s \) with \(t \).

4. Let \(s = AAT \) and \(t = AACGT \) with scores 3 for match, -2 for mismatch and the affine gap penalty with \(d = 3 \) and \(e = 1 \). Find an optimal global alignment of \(s \) with \(t \).

5. Let \(s = AAT \) and \(t = AACGT \) with scores 3 for match, -2 for mismatch and the the following gap penalty function \(\gamma(1) = -1.5, \gamma(2) = -3, \) and \(\gamma(k) = -5 \) for \(k \geq 3 \). Find an optimal global alignment of \(s \) with \(t \).

6. Estimate the running time ("big Oh" estimate) of the dynamic programming algorithm for the following problems:

 (a) Global alignment problem with gap penalty function \(\gamma(g) = -2g^2 \).
 (b) Global alignment problem with gap penalty function \(\gamma(g) = -5 - 2g \).
 (c) Global alignment algorithm with gap penalty function \(\gamma(g) = -2 \).
 (d) Global alignment algorithm with gap penalty function \(\gamma(g) = -3g \).