1. Let \(s = AACGAT \) and \(t = ACTCT \). Let scores be 2 for match an -2 for mismatch and use the linear gap penalty \(\gamma(g) = -3g \). Find an optimal global alignment of \(s \) with \(t \).

2. Let \(s = AACAGTATCGCT \) and \(t = CAGGTAT \). Let scores be 3 for match an -2 for mismatch and use the linear gap penalty with \(\gamma(g) = -3g \). Find an optimal local alignment of \(s \) with \(t \).

3. Let \(s = PHAAWAE \) and \(t = APEAWE \). Use the linear gap penalty function \(\gamma(g) = -3g \) and the scores from Example 42 in Notes to find
 - an optimal global alignment of \(s \) and \(t \),
 - an optimal local alignment of \(s \) and \(t \).

4. Let \(s = ACAGT \) and \(t = AAACAGGTATATGTCACT \) with scores 3 for match an -2 for mismatch and use the linear gap penalty with \(\gamma(g) = -3g \). Find an optimal semi-global alignment of \(s \) with \(t \).

5. Find an optimal global alignment of \(PHHAWE \) with \(HHWAE \). Use the linear gap penalty \(\gamma(g) = -4g \) and PAM250 as a scoring matrix (you can generate the matrix at http://www.cmbi.kun.nl/bioinf/tools/pam.shtml or use one from literature).

6. Repeat the previous exercise with local instead of global alignment.