Algorithms

1. Give an algorithm
 - which finds a maximum in a list of integers;
 - which finds the arithmetic average of \(n \) integers;
 - which counts the number of \(A \)'s in a string;
 - which counts the number of \(A \)'s \(C \)'s \(G \)'s and \(T \)'s in a string over an alphabet \(A, C, G, T \);
 - which finds the first occurrence of a substring \(AAA \);
 - which checks if a string is a palindrome;
 - which finds if a string \(s \) is a substring of a string \(t \);
 - which finds if a string \(s \) is a subsequence of a string \(t \).

2. Give a "big Oh" estimate for the worst-case complexity of each algorithm from 1.