Final Exam, December 13, 10:00-11:50, PSF 208

- Logic.
 - Operators (especially implication).
 - Predicates and quantifiers.
 - Propositional equivalence.

- Methods of proof.
 - Direct and indirect proofs.
 - Proof by contradiction.

- Sets and functions.
 - Notation in set theory, cardinality of sets, power set.
 - Operations on sets, generalized unions and intersections.
 - Functions: injective, surjective, bijective.
 - Image and pre-image of a function.
 - Strictly increasing and decreasing functions.
 - Ceiling and floor functions.

- Algorithms.
 - Searching algorithms: linear search, binary search.
 - Sorting algorithms: bubble sort, sorting by simple insertion.
 - Complexity of algorithms.

- Asymptotic notation.
 - Showing that \(f(x) = O(g(x)) \) using \(C \) and \(k \).
 - Showing that \(f(x) \) is not \(O(g(x)) \).
 - Properties of \(O \)-notation.

- Number theory.
 - Division, prime numbers, modulo operation, and modulo relation.
– Euclidean algorithm, correctness and the Lame’s Theorem.
– Algorithms for change of basis.

• Sequences and summations.
 – Arithmetic and geometric progressions.

• Mathematical induction.
 – Identities, inequalities, other statements that can be proved using induction, Fibonacci numbers.

• Recursive definitions.

• Counting.
 – Permutations and combinations, basic inclusion-exclusion principle.
 – The Pigeonhole Principle with applications.
 – Binomial Theorem.

• Advanced Counting.
 – Modeling with recurrence relations.
 – Solving linear recurrence relations.
 – Divide-and-conquer recurrence relation.