Review for Final Exam, 12/13, 10:00-11:50

December 7, 2006

1. Echelon forms
 - Elementary row operations.
 - Back Substitution (free variables, leading variables).
 - Gaussian elimination, Gauss-Jordan elimination.

2. Homogeneous systems.

 - Addition, scalar multiplication, multiplication.
 - Inverse of a matrices:
 - 2×2 matrices formula.
 - Method for finding A^{-1}.

4. Determinants of 2×2 matrices.
 - Transpose of a matrix and relation to determinants.
 - Solving systems using Cramer’s Rule.

5. Higher-order determinants.
 - ijth minor, $M_{ij} =$ determinant of a submatrix obtained by deleting ith row and jth column.
 - ijth cofactor, $A_{ij} = (-1)^{i+j} M_{ij}$.
• Cofactor expansions of determinants.

\[\text{det} A = a_{i_1} A_{i_1} + a_{i_2} A_{i_2} + \cdots + a_{i_n} A_{i_n} \]

\[\text{det} A = a_{1j} A_{1j} + a_{2j} A_{2j} + \cdots + a_{nj} A_{nj}. \]

6. Determinants and the inverse of a matrix

• Properties of determinants.
• Adjoint matrix.
• Inverse of a matrix.

7. Vector Spaces.

• Abstract vector spaces and subspaces.
• Solution spaces.
• Linear combinations and \(\text{span}(S) \).
• Linear independence.

8. Vector spaces associated with a matrix \(A \).

• Row space. Finding a basis of \(\text{Row}(A) \).
• Column space. Finding a basis of \(\text{Col}(A) \).
• Null space. Finding a basis of \(\text{Null}(A) \).
• Rank of a matrix: \(\text{rank}(A) + \text{dim}(\text{Null}(A)) = n. \)

• Scalar product, length of a vector, Cauchy-Schwarz inequality.
• Orthogonal and orthonormal bases.
• \(V^\perp \) and properties.
• \(\text{Row}(A)^\perp = \text{Null}(A), \text{Null}(A)^\perp = \text{Row}(A) \).
• Finding a basis of \(V^\perp \).

• Finding the least squares solution of $Ax = b$.
• Finding a projection of vector b on V.
• Finding a projection of b on V in the case we have an orthogonal basis of V.
• Finding an orthogonal basis of V. Finding an orthonormal basis of V.

11. Eigenvalues and eigenvectors.

• Finding eigenvalues and eigenvectors.
• Diagonalization.