Basic properties and terminology.

1. Vector spaces
 - \(\mathbb{R}^n \) is the space of \((x_1, \ldots, x_n)\) with scalar multiplication and addition defined as in matrix algebra.
 - Abstract vector space: set \(V \) with addition and scalar multiplication which is closed under the operations and such that operations satisfy natural properties (a)-(h) (page 165).

2. Subspaces
 - \(W \) is a subspace of \(V \) if and only if (a) \(u + v \) is in \(W \) whenever \(u, v \) are in \(W \) (b) \(cv \) is in \(W \) whenever \(v \) is in \(W \) and \(c \) is a scalar.
 - Set of vectors which are solutions to a homogeneous system of equation forms a subspace (with addition and scalar multiplication defined as for matrices).

3. Linear combinations and independence
 - Linear combination of \(v_1, \ldots, v_n \) is any vector of the form \(c_1v_1 + c_2v_2 + \cdots + c_nv_n \).
 - Vectors \(v_1, \ldots, v_n \) are called linearly independent if \(c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0 \) implies \(c_1 = c_2 = \cdots = c_n = 0 \).
 - \(\text{span}(S) \) is the set of all linear combinations of vectors from \(S \).

4. Facts
 - For any set \(S \) of vectors from a vector space \(V \), \(\text{span}(S) \) is a subspace of \(V \).
 - Vectors \(v_1, \ldots, v_k \) in \(\mathbb{R}^n \) are linearly independent if and only if \(A = [v_1 \, v_2 \, \ldots \, v_k] \) has a \(k \times j \) submatrix with a non-zero determinant.

5. Bases
 - Set \(S \) of vectors is a basis of vector space \(V \) if (a) vectors from \(S \) are linearly independent and (b) \(\text{span}(S) = V \)
 - Standard basis of \(\mathbb{R}^n \): \(e_1 = (1, 0 \ldots, 0), \ldots, e_n = (0, \ldots, 0, 1) \).
• If a basis has \(n \) vectors then any set of \(m > n \) vectors is linearly dependent.

• Any two bases have the same size. The size of a basis is called the dimension of the vector space.

• Let \(V \) be a vector space of dimension \(n \).
 – If \(S \) consists of \(n \) vectors which are linearly independent then \(S \) is a basis.
 – If \(\text{span}(S) = V \) and \(S \) consists of \(n \) vectors then \(S \) is a basis of \(V \).