More advanced topics.

1. Row and Column spaces

• Let \(A \) be \(m \) by \(n \). Basis of \(\text{Row}(A) \) contains non-zero rows of the echelon form of \(A \).

• Let \(A \) be \(m \) by \(n \). Basis of \(\text{Col}(A) \) contains columns of \(A \) which correspond to pivot columns of the echelon form of \(A \).

• We have

\[
\text{dim}(\text{Col}(A)) = \text{dim}(\text{Row}(A))
\]

which is called the rank of \(A \) (\(\text{rank}(A) \)) and

\[
\text{rank}(A) + \text{dim}(\text{Null}(A)) = n.
\]

2. Orthogonality

• Let \(V \) be a subspace of \(\mathbb{R}^n \). Then \(V^\perp \) contains all vectors \(u \) which are orthogonal to every vector from \(V \).

• Small facts about orthogonality:

 – If \(v_1, \ldots, v_k \) are mutually orthogonal then they are linearly independent.

 – \((V^\perp)^\perp = V \).

 – The only vector in both \(V \) and \(V^\perp \) is 0.

 – If \(S \) is such that \(V = \text{span}(S) \) then \(u \) is in \(V^\perp \) if and only if \(u \) is orthogonal to every vertex from \(S \).

• We have

\[
\text{Row}(A) = \text{Null}(A)^\perp.
\]

and as a corollary

\[
\text{dim}(V) + \text{dim}(V^\perp) = n
\]

for every subspace \(V \) of \(\mathbb{R}^n \).

3. Normal systems and least squares
• If $Ax = b$ is inconsistent we can try to solve an approximate system that is we can project b on $Col(A)$ to find vector p in the solution space which is closest to b.

• Normal system: $A^T A \bar{x} = A^T b$. Least squares solution is \bar{x} and $p := A \bar{x}$.

• If A is $m \times n$ of rank n then $A^T A$ is non-singular.

4. Gram-Schmidt algorithm

• Start with v_1, \ldots, v_k which are linearly independent.

• Set $u_1 := v_1$ and then iterate and compute

$$u_{i+1} := v_{i+1} - \left(\frac{v_{i+1} \cdot u_1}{u_1 \cdot u_1} u_1 + \cdots + \frac{v_{i+1} \cdot u_i}{u_i \cdot u_i} u_i \right).$$

• If v_1, \ldots, v_k are mutually orthogonal then projection of b on $V := \text{span}(v_1, \ldots, v_k)$ is

$$p := \frac{b \cdot v_1}{v_1 \cdot v_1} + \cdots + \frac{p \cdot v_k}{v_k \cdot v_k}.$$

5. Eigenvalues and eigenvectors

• Eigenvalue λ, eigenvector v: $Av = \lambda v$ for nonzero v.

• Eigenvalues of A are the roots of $\det(A - \lambda I) = 0$ (characteristic equation).

• To find eigenvector associated with λ solve $(A - \lambda I)x = 0$. Eigenvectors associated with λ form a subspace called the eigenspace.

6. Diagonalization

• Matrices A and B are similar if $B = P^{-1} AP$.

• An $n \times n$ matrix A is similar to diagonal matrix D if and only if A has n linearly independent eigenvectors.

(*) Eigenvectors associated with different eigenvalues are linearly independent.

(*) If an $n \times n$ matrix A has n distinct eigenvalues that it is similar to a diagonal matrix.

(*) Not covered in class.