Mat114
Review of Chapter 5.

1. Simple Interest Formula

\[FV = P(1 + rt) \]

where \(FV \) is the future value, \(P \) is the principal, \(r \) is the interest rate (per year), \(t \) is the number of years (no necessarily an integer).

2. Compound Interest Formula

\[FV = P(1 + i)^n \]

where \(FV \) is the future value, \(P \) is the principal, \(i \) is the rate per compounding period, and \(n \) is the number of periods.

3. Annuities

- **Ordinary annuity** - payment at the end of each payment period.

\[FV = pymt \frac{(1 + i)^n - 1}{i} \]

- **Annuity due** - payment in the beginning of each payment period.

\[FV = pymt \frac{(1 + i)^n - 1}{i} (1 + i), \]

where \(pymt \) is the payment, \(i \) is the rate per period, \(n \) is the number of periods.

- **Present value** of an ordinary annuity is the amount \(P \) such that

\[P(1 + i)^n = pymt \frac{(1 + i)^n - 1}{i}. \]
4. Amortized loans

- Simple interest amortized loan has the payment \(pymt \) such that

\[
pymt \frac{(1 + i)^n - 1}{i} = P(1 + i)^n,
\]

where \(P \) is a loan amount, \(i \) is the rate per payment period, and \(n \) is the number of periods.

- Simple interest amortized loan has the interest portion of each payment equal to a simple interest on an outstanding principal.

- Unpaid balance

\[
P(1 + i)^m - pymt \frac{(1 + i)^n - 1}{i},
\]

where \(P \) is a loan amount, \(i \) is the rate per period, \(m \) is the number of the period from the beginning to the point when the loan is paid off.