Theorem 1 (Vizing, 7.1.10) If G is a simple graph then $\chi'(G) \leq \Delta(G) + 1$.

Proof. Starting Point: Let f be a proper $\Delta(G) + 1$-edge coloring of a subgraph G' of G. We will show that if there is an un-colored edge of G (i.e. $G' \neq G$) then we can augment the coloring and color the edge (by possibly recoloring some previous edges). Since the number of colors is $\Delta(G) + 1$ each vertex has a color which is not used on edges incident to it.

Downshifting idea: Suppose uv is un-colored, color a_0 is missing at u, and color a_1 is missing on v. We may assume a_1 appears in u on some edge uv_1 as otherwise we can color uv with a_1. Let a_2 be the color missing on v_1. We can assume a_2 appears on some edge uv_2 as otherwise we can re-assign the colors:

$$f(uv_1) := a_2, f(uv) = a_1.$$

We can iterate this process and so we select v_i so that a_i is used on uv_i and pick an un-used color a_{i+1} on v_i If a_{i+1} is missing on u then we can re-color by

$$f(uv_i) := a_{i+1}, f(uv_{i-1}) := a_i, f(uv_{i-2}) := a_{i-1}, \ldots, f(uv) := a_1.$$

This is called downshifting from v_{i+1}. Since there are only $\Delta(G) + 1$ colors some color will eventually will be repeated or we will downshift.

Looking at the repeated a_k and a_0, a_k-alternating path: Let l be the smallest index such that a color missing at v_l appears on a_1, \ldots, a_l and suppose the color is a_k.

- Color a_k is missing on v_l and on v_{k-1}. Color a_k does appear on uv_k.
- If a_0 does not appear at v_l then we downshift from v_l using color a_0 and so assume a_0 appears at v_l.

Let P be a maximal alternating path of edges colored a_0 and a_k that begins at v_l (with edge colored by a_0). As the coloring is proper there is obviously one such path. There are a few possibilities to consider.

1. If P ends in u then it reaches u by an edge colored with a_k as a_0 is missing at u and so this is the edge v_ku. Then we downshift from v_k and interchange colors on P.

2. If P ends in v_{k-1} then it ends in color a_0 as by definition a_k is missing at v_{k-1}. Then downshift from v_{k-1} and color uv_{k-1} with color a_0 and interchange colors on P.

1
3. If P ends in a vertex w such that $w \neq u$ and $w \neq u_{k-1}$ then $w \notin \{u, v_{k-1}, v_k, v_l\}$. Then we downshift from a_l, color uv_l with a_0 and interchange colors on P.

Figure 1: Vizing’s Theorem