Theorem 1 (Whitney, 4.2.8) A graph is 2-connected if and only if it has an ear decomposition. Moreover the first cycle of the decomposition can be chosen to be an arbitrary cycle in G.

Proof. (If there is an ear decomposition then G is 2-connected).
We will prove it by induction on the number of ears, t. If $t = 0$ then G is a cycle and so it is 2-connected (does not have a cut vertex). Suppose G has t ears, P_0, P_1, \ldots, P_t. Then $G = H \cup P_t$ where $H = \bigcup_{i<t} P_i$ and by inductive assumption H is 2-connected. P_t is a path of length at least one with endpoints $x, y \in H$ and with internal vertices not in H. We shall prove that G does not have cut vertices. To that end let $z \in V(G)$.

Case 1: z is an internal vertex of P_t. Then every other vertex of P_t is connected to one of the endpoints x or y of P_t. Since H is connected there is path between x and any other vertex in the graph (including y) and there is a path between y and any vertex of H.

Case 2: $z \in V(H)$. $H - z$ is connected as H is 2-connected. Thus for $w \in \{x, y\} - \{z\}$ and any vertex v in $V(H)$ there is a v, w-path in $H - z$. If $z \neq x$ then there is a path from every internal vertex of P_t to x. If $z = x$ then there is a path from every internal vertex of P_t to y.

(If G is 2-connected then G has an ear decomposition starting at any cycle). Note that G contains a cycle as $\delta(G) \geq 2$. Let C be a cycle in G. We will show by induction on n that:

If $n \leq |E(G)|$ then there is a subgraph H of G with at least n edges which has an ear decomposition starting at C.

Base Step. $n = 0$. Take C.

Inductive Step. Let $n \leq |E(G)|$. By the inductive assumption there is a
subgraph H of G with at least $n - 1$ edges which has an ear decomposition P_0, P_1, \ldots, P_l starting at C.

- If $|E(H)| \geq n$ then we are done.

- If there is an edge $xy \in E(G) \setminus E(H)$ with $x, y \in H$ then we add xy to the decomposition of H to get a subgraph on n edges.

- Finally, if no such edge exists then H is an induced subgraph of G and so $[V(H), V \setminus V(H)]$ is an edge-cut in G as $|V(H)| < n$. Let $e = xy$ be such that $x \in V(H)$ and $y \in V \setminus V(H)$. As G is 2-connected there is a path P in G from y to $V(H) - x$. Add $P_{t+1} := xyP$ to H. Then the new graph has at least n edges and has decomposition $P_0, \ldots, P_l, P_{l+1}$.