1 Tutte’s Theorem

Theorem 1 (Tutte, 3.3.3) A simple graph G has a 1-factor if and only if $o(G - S) \leq |S|$ for every $S \subseteq V(G)$.

Necessity If G has a 1-factor M and $S \subseteq V(G)$ then every odd component of $G - S$ has at least one vertex which is saturated by an edge of M with the second endpoint in S. As M is a matching, $o(G - S) \leq |S|$.

Sufficiency We will prove it by contradiction.

• (We may assume that G is a maximal counterexample.) Let $G' = G + e$, i.e. we add edge e to G. Note that if G' does not have a 1-factor then G does not have 1-factor. Also $o(G' - S) \leq o(G - S)$ as adding e cannot create new odd component in $G - S$. Consequently we may assume that G is a maximal counterexample in the following sense. It has no 1-factor but adding any edge to G gives a 1-factor and the Tutte’s condition for G is satisfied.

• (U) Let U be the set of vertices in G of degree $|V(G)| - 1$.

• (Case 1:) $G - U$ consists of disjoint complete graphs. Then $o(G - U) \leq |U|$ and in each even component we can find a 1-factor in each odd component we can find a matching that saturates all but one vertex. The remaining vertex can be paired with a vertex from U. What remains of U must be even and so we can pair the remaining vertices as well.

• (Case 2:) $G - U$ is not a disjoint union of cliques.
Proof of Tutte’s Theorem (Case 2), u, v, w, z

- **(u, v, w)**. First observe that there exist two vertices u, v in $G - U$ which are at distance equal to 2 in $G - U$. Indeed let u, v be two nonadjacent vertices in the same component which is not a complete graph. Consider the shortest path u, w, x, \ldots, v. Then u, x are at distance two and are both connected with w. Assume $uw, vw \in E$ and u are v are not connected.

- **(z)**. Second observe that there is a vertex $z \in G - U$ which is not connected to w. Indeed, otherwise w is joint be an edge to every vertex in $G - U$ and to every vertex from U (by definition of U) and so w would be in U which is not the case.

- **($M_1 \Delta M_2$)**. Since adding an edge to G gives a 1-factor, $G + uv$ has a 1-factor M_1 and $G + wz$ has a 1-factor M_2. We will show that $M_1 \Delta M_2$ has a 1-factor that avoids uv and wz. This gives a 1-factor in G.

- **(F and properties of F)**. Let $F = M_1 \Delta M_2$. Note that $uv, wz \in F$ as each is in only one of the M_i’s. Moreover every vertex of G has degree in F which is either 0 or 2 as it has degree exactly one in each of the M_i’s. Thus components of F are even cycles and isolated vertices.

- **(C and easy case)**. Let C be the component that contains uv. If C does not contain wz then we easily obtain a 1-factor of C that avoids uv and then do the same for the cycle that contains wz.

- **(Harder case)**. Suppose C contains both uv and wz. Recall that $uw, vw \in E(G)$ and we will use that information to construct a
new matching. Consider the path S_1 in C between w and u and S_2 between w and v so that $C := S_1, uw, S_2$ and suppose without loss of generality that z is in S_2. Consider the matching $N_2 := E(S_2) \cap M_1$, $N_1 := E(S_1) \cap M_2$ and let $N := N_1 \cup N_2 \cup \{wu\}$. $N \cup (M_1 - E(C))$ is a 1-factor in G.