Part 1, Computations

• Finding a basis and dimension of a vector space $span(S)$
 S is a set of vectors in \mathbb{R}^n, matrices, polynomials, functions.

• Finding the transition matrix
 – If $V = \mathbb{R}^n$ then $S = U^{-1}V$.
 – If $V = P_n$ or $C[a,b]$ set up the system of equations for coefficients.

• Finding a basis and dimension of $N(A), R(A), R(A^T)$

• Linear Transformations
 – Checking if a given function is a linear transformation.
 – Finding the kernel.

• Matrix representation of a linear transformation

• Finding a basis and dimension of $span(S)^\perp$

• The least squares solutions and the normal equation

• Checking if a given function defines an inner product

• Checking if a given function defines a norm

• Orthogonality
 – Checking if vectors (polynomials, functions) are orthogonal or orthonormal.
 – Gram-Schmidt procedure for finding an orthonormal basis.
Part 2, Theory

• **A basis and dimension**
 – Definitions.
 – Facts about spanning sets and independent sets when the size of the set is equal to the dimension of the vector space.

• **Row space, column space, null space**
 – Definitions. The rank and the nullity of a matrix.
 – The rank-nullity theorem.
 – Correspondence between row spaces (column spaces) of equivalent matrices.
 – The dimension of the column space in relation to the dimension of the row space.
 – The null space is the orthogonal complement of the row space. The null space of the transpose is the orthogonal complement of the column space.

• **Linear Transformations**
 – Definition of a linear transformation.
 – Every linear transformation \(L \) from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) has the form \(L(x) = Ax \).
 – The kernel and the image.
 – Similarity of matrices.

• **Orthogonality**
 – Orthogonality of vectors. Orthogonal subspaces. The orthogonal complement of a subspace. The set of orthogonal and orthonormal vectors.
 – Properties of the orthogonal complement of \(S \). Direct sum of subspaces.

• **Inner product spaces and normed vector spaces**
– Definition of an inner product. Definition of a norm.
– Important examples of inner products and norms.
– Cauchy-Schwarz inequality.
– Orthonormal basis. Parseval’s identity.