Chapter 4
Linear Transformations
Definition 1 A function L from a vector space V to a vector space W is said to be a linear transformation if

$$L(\alpha v + \beta w) = \alpha L(v) + \beta L(w)$$

for any $v, w \in V$ and any scalars α, β.

Fact 1 A function $L : V \rightarrow W$ is a linear transformation if and only if

- $L(v + w) = L(v) + L(w)$ for any $v, w \in V$.
- $L(\alpha v) = \alpha L(v)$ for any scalar α and any $v \in V$.

Remark: A linear transformation from V to V is called a linear operator.

Examples:

- $L : \mathbb{R}^2 \to \mathbb{R}^2$, $L((x_1, x_2)^T) = (x_1, -x_2)^T$.

- $L : \mathbb{R}^m \to \mathbb{R}^n$, $L(x) = Ax$ where A is an $n \times m$ matrix.

- $L : \mathbb{R}^2 \to \mathbb{R}^3$, $L((x_1, x_2)^T) = (x_2, x_1, x_1 + x_2)^T$ as $L(x) = Ax$ with

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}.$$
Fact 2 Let $L : V \rightarrow W$ be a linear transformation. Then

- $L(0_v) = 0_w$.

- $L(-v) = -L(v)$.

- $L(\sum_{i=1}^{n} \alpha_i v_i) = \sum_{i=1}^{n} \alpha_i L(v_i)$.

Definition 2 Let $L : V \rightarrow W$ be a linear transformation.

- The kernel of L, $\text{ker}(L) = \{v \in V | L(v) = 0_W\}$.
• For a subspace S of V, the image of S, $L(S) = \{w \in W | w = L(v) \text{ for some } v \in S\}$. $L(V)$ is called the range of L.

Theorem 3 Let $L : V \rightarrow W$ be a linear transformation and let S be a subspace of V. Then $\ker(L)$ is a subspace of V and $L(S)$ is a subspace of W.

Example 1 Let $D : P_n \rightarrow P_n$ be given by $D(f) = f'$ and let $L : P_n \rightarrow P_{n+1}$ be given by $L(f(x)) = \int_0^x f(t)dt$. Find $\ker(D), \ker(L)$. Find $D(P_2), L(P_2)$.

Matrix Representation of a Linear Transformation
Theorem 4 If $L : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation then there is an $m \times n$ matrix A such that

$$L(x) = Ax.$$

Moreover, for $j = 1, \ldots, n$, the jth column of A, $a_j = L(e_j)$.

Notation: Let $E = [v_1, \ldots, v_n]$ be an ordered basis in a vector space V. Then $v \in V$ can be written uniquely as

$$v = c_1v_1 + \cdots + c_nv_n.$$

Then

$$[v]_E = [c_1, \ldots, c_n]^T.$$
Theorem 5 Let V be a vector space with an ordered basis $E = [v_1, \ldots, v_n]$ and let W be a vector space with an ordered basis $F = [w_1, \ldots, w_m]$. Then for a linear transformation $L : V \to W$ there is an $m \times n$ matrix A such that

$$[L(v)]_F = A[v]_E.$$ Moreover $a_j = L(v_j)$.

Example 2

- Find the matrix representation of $D : P_n \to P_{n-1}$ with standard bases in P_n.

- Find the matrix representation of $D : P_n \to P_n$ with standard bases in P_n.
• Find the matrix representation of the integral $I : P_n \to P_{n+1}$ with standard bases in P_n, P_{n+1}.

Example 3 Write a simple animation program in which the triangle T with vertices $(0, 0), (1, 1), (1, -1)$ is rotating around $(0, 0)$.

• Represent T using the 2×4 matrix A_T where for two consecutive columns there is a line segment between them. This gives

\[
A_T = \begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 1 & -1 & 0
\end{pmatrix}.
\]

• We will be rotating points around $(0, 0)$ incrementing angel ϕ (using a small increment and reducing modulo 360).
Rotation can be accomplished by multiplying \(A_T \) by a rotation matrix \(R_\phi \) (from the left).

Example 4 (Cauchy’s functional equation) \(\text{Clearly if } f : R \rightarrow R \text{ is a linear operator then } f(x) = cx \text{ for some } c \in R. \) Assume
however that \(f : R \to R \) satisfies only the additive property, that is

\[
f(x + y) = f(x) + f(y)
\]

for every \(x, y \in R \).

- **Theorem 6** Let \(f : R \to R \) be such that for every \(x, y \in R \), \(f(x + y) = f(x) + f(y) \). If there exist \(a < b \) such that \(f \) is bounded on \([a, b]\) then \(f(x) = cx \) for some \(c \).

- Let \(\alpha, \beta \) be two irrational numbers such that \(\alpha / \beta \) is not in \(Q \). Then there is a function \(f : R \to R \) such that \(f(x + y) = f(x) + f(y) \) and \(f(\alpha) = 1, f(\beta) = 0 \) and \(f \) is not linear.
Similarity

Question: Let $L : V \to V$ be a linear operator and let E, F be two ordered bases in V with transition matrix S (from F to E). How does the matrix representation change as we switch from E to F?

Theorem 7 Let E, F be two ordered bases for a vector space V and let $L : V \to V$ has the matrix representation A with respect to E. If S is the transition matrix from F to E then the matrix representation B of L with respect to F is

$$B = S^{-1}AS.$$

Definition 3 Let A, B be two $n \times n$ matrices. We say that B is similar to A if there is a nonsingular matrix S such that $B =
$S^{-1}AS$.

Note: If B is similar to A then A is similar to B.