Chapters 6 and 7
Strong Induction

Aim: Prove that \(P(n) \) is true for every integer \(n \geq 1 \)

Method:

1. **Base Step**: Show that \(P(1) \) is true.

2. **Inductive Step**: Show that implication \((P(1) \land P(2) \land \cdots \land P(n)) \rightarrow P(n + 1) \) is true for every integer \(n \).
Theorem 1 Let \(a \) be an integer and let \(b \) be a positive integer. Then there exist integers \(q, r \) such that

\[
a = bq + r,
\]

\[0 \leq r < b.\]

Theorem 2 Every integer \(n > 1 \) is either a prime or is a product of primes.

Theorem 3 (Well-ordering principle) Every non-empty set of natural numbers has a smallest element.
Irrationality of \sqrt{n}

- Show that $\sqrt{2}$ is irrational.
- Show that $\sqrt{3}$ is irrational.
Denumerable sets

Definition 1 Two sets A, B are equinumerous if there is a bijection $f : A \rightarrow B$.

$A \sim B$ if A and B are equinumerous.

Example 1

\mathbb{Z}^+ and \mathbb{Z} are equinumerous.

Let E be the set of even numbers. Then E and \mathbb{Z}^+ are equinumerous.
Theorem 4 For any sets A, B, C, D.

- If $A \sim B$ and $C \sim D$, then $A \times C \sim B \times D$.

- If $A \sim B$, $C \sim D$, $A \cap C = \emptyset$, $B \cap D = \emptyset$, then $A \cup C \sim B \cup D$.

- $A \sim A$.

- If $A \sim B$, then $B \sim A$.

- If $A \sim B$ and $B \sim C$, then $A \sim C$.
• A set A is called **denumerable** if it is equinumerous with \mathbb{Z}^+.

• A set A is called **countable** if it is either finite or denumerable.

• If A is not countable then it is called **uncountable**.
Example 2 \(N \) is denumerable.

- \(Z \) is denumerable.

- The set of even integers is denumerable.

- The set \(\{5 + 1/n | n \in Z^+\} \) is denumerable.
Theorem 5 Every subset of a countable set is countable.

Theorem 6 • $\mathbb{Z}^+ \times \mathbb{Z}^+$ is denumerable.

• \mathbb{Q} is denumerable.

Proof.

• Use $f : \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$, $f((a,b)) = 2^{a-1}(2b-1)$.

• Use $f : \mathbb{Q}^+ \to \mathbb{N} \times \mathbb{N}$, $f(r) = (p,q)$ assuming $r = p/q$ and p,q have no common factors.
Theorem 7 If A, B are denumerable then $A \cup B$ is denumerable and $A \times B$ is denumerable.

Theorem 8 Let $\{A_i|i \in \mathbb{Z}^+\}$ be a family of pairwise disjoint sets such that A_i is denumerable. Then $\bigcup_{i=1}^{\infty} A_i$ is denumerable.
Theorem 9 [Cantor’s Theorem] The set of real numbers is uncountable.

Georg Cantor, 1845-1918,
Proof. Can you enumerate all possible infinite strings of blue/red marbles?
Theorem 10 For every set X, X and $P(X)$ are not equinumerous.
Proof. Show there is no surjection from X to $P(X)$. By contradiction suppose $f : X \rightarrow P(X)$ is a surjection.

- Let $Y = \{x \in X | x \notin f(x)\}$.

- Let $y \in X$ be such that $f(y) = Y$.

- If $y \in f(y) = Y$ then by definition of Y, $y \notin Y$.

- If $y \notin f(y) = Y$ then by definition of Y, $y \in Y$.