3. The Fundamentals
3.1 Algorithms

Definition 1 An algorithm is a definite procedure for solving a problem using a finite number of steps.

Searching Algorithms
Problem: Locate an element x in a list of distinct elements a_1, a_2, \ldots, a_n or determine that it is not in the list.
Linear Search Algorithm

procedure linear_search(x: integer, a₁, ..., aₙ: distinct integers)
1. i := 1
2. while (i ≤ n and x ≠ aᵢ)
3. i := i + 1
4. if i ≤ n then location := i
5. else location := 0 {x is not in the list}
Binary Search Algorithm

procedure binary_search(x:integer, a_1, a_2, \ldots, a_n integers in increasing order)

1. $i := 1$
2. $j := n$
3. while $i < j$
4. begin
5. \[m := \lfloor (i + j)/2 \rfloor \] \{middle element\}
6. if $x > a_m$ then $i := m + 1$
7. else $j := m$
8. end
9. if $x = a_i$ then $location := i$
10. else $location := 0$
Sorting Algorithms

Problem: Put a list a_1, a_2, \ldots, a_n in the increasing order.

The Bubble Sort

procedure bubblesort(a_1, \ldots, a_n)
1. for $i := 1$ to $n - 1$
2. for $j := 1$ to $n - i$
3. if $a_j > a_{j+1}$ then interchange a_j with a_{j+1}
The Insertion Sort

procedure insertionsort(a_1, \ldots, a_n)
1. for $j := 2$ to n
2. begin
3. \hspace{1em} $i := 1$
4. \hspace{1em} while $a_j > a_i$
5. \hspace{2em} $i := i + 1$
6. \hspace{1em} $m := a_j$
7. \hspace{1em} for $k := 0$ to $j - i - 1$
8. \hspace{2em} $a_{j-k} := a_{j-k-1}$
9. \hspace{1em} $a_i := m$
10. end
Greedy Algorithms
Greedy algorithm makes the "best" decision for the current step when solving an optimization problem.

3.2 The Growth of Functions

Definition 2 Let f and g be two functions from the set of integer (or real) numbers. We say that $f(x)$ is $O(g(x))$ (which we write as $f(x) = O(g(x))$) if there are two constants C and k such that

$$|f(x)| \leq C|g(x)|,$$

whenever $x > k$.
Theorem 1 Let \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \) where \(a_0, \ldots, a_n \) are real numbers. Then \(f(x) = O(x^n) \).

Fact 2 1. Suppose that \(f_1(x) = O(g(x)) \) and \(f_2(x) = O(g(x)) \). Then \((f_1 + f_2)(x) = O(g(x)) \).

2. Suppose that \(f_1(x) = O(g_1(x)) \) and \(f_2(x) = O(g_2(x)) \). Then \((f_1 f_2)(x) = O(g_1(x)g_2(x)) \).
Big Omega notation:

Definition 3 We say that \(f(x) = \Omega(g(x)) \) if there exist positive constants \(C \) and \(k \) such that

\[
|f(x)| \geq C|g(x)|,
\]

for all \(x > k \).

Big Theta notation:

Definition 4 We say that \(f(x) = \Theta(g(x)) \) if \(f(x) = O(g(x)) \) and \(f(x) = \Omega(g(x)) \).
3.3 Complexity

1. Time used to solve a problem (time complexity).

2. Memory space used (space complexity).

Time analysis:

1. Worst-case analysis.

2. Average-case analysis.
3.4 The Integers and Division

Definition 5 Let a and b be integers with $a \neq 0$. We say that a divides b if there is an integer c such that $b = ac$. Then a is called a factor of b and b is called a multiple of a.

Fact 3 Let a, b, c be integers. Then

- If $a \mid b$ and $a \mid c$ then $a \mid (b + c)$.

- If $a \mid b$ then $a \mid (bc)$ for any integer c.

- If $a \mid b$ and $b \mid c$ then $a \mid c$.

Modular Arithmetic

Definition 6 Let a be an integer and m a positive integer. We denote by $a \mod m$ the remainder when a is divided by m.

Definition 7 If a and b are integers and m is a positive integer then a is congruent to b modulo m if $m \mid (a - b)$.

Fact 4 Let m be a positive integer and let a and b be two integers.

1. $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.
2. $a \equiv b \pmod{m}$ if and only if there is an integer k such that $a = b + mk$
3.5 Prime numbers and greatest common divisor

Prime Numbers

Definition 8 A positive integer p greater than one is called prime if the only positive factors of p are 1 and p. A positive integer greater than one that is not prime is called composite.

Theorem 5 (The Fundamental of Arithmetic) Every positive integer can be written uniquely as the product of primes.

Example 1 Prove that if n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.
The Division Algorithm

Theorem 6 Let a be an integer and let d be a positive integer. Then there exist unique integers q and r such that

1. $a = dq + r$ and

2. $0 \leq r < d$.
Greatest Common Divisor and Least Common Multiple

Definition 9 Let a, b be two integers not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b. It is denoted by $gcd(a, b)$.

Definition 10 The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by $lcm(a, b)$.

Theorem 7 Let a, b be positive integers. Then

$$a \cdot b = gcd(a, b)lcm(a, b).$$
Fact 8 Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then

1. $(a + c) \equiv (b + d) \pmod{m}$

2. $(ac) \equiv (bd) \pmod{m}$.
3.6 Integers and Algorithms

Euclidean Algorithm

Goal: Find \(gcd(a, b), \ a \geq b. \)

Method: Let \(r_0 = a, r_1 = b. \) Then
\[
\begin{align*}
 r_0 &= r_1q_1 + r_2 \text{ where } 0 < r_2 < r_1 \\
 r_1 &= r_2q_2 + r_3 \text{ where } 0 < r_3 < r_2 \\
 & \cdots \\
 r_{n-2} &= r_1q_{n-1} + r_n \text{ where } 0 < r_n < r_{n-1} \\
 r_{n-1} &= r_nq_n
\end{align*}
\]
Euclidean Algorithm

procedure gcd$(a, b$: positive integers$)$
1. $x := a$
2. $y := b$
3. while$(y \neq 0)$
4. begin
5. $r := x \mod y$
6. $x := y$
7. $y := r$
8. end
9. return $gcd(a, b) = x$

Lemma 9 Let $a = bq + r$ where a, b, q and r are integers. Then $gcd(a, b) = gcd(b, r)$
Claim 10 \(\gcd(a, b) = r_n \)

Proof
Indeed, by Lemma 9,

\[
\gcd(a, b) = \gcd(r_0, r_1) = \gcd(r_1, r_2) = \ldots
\]

\[
\ldots = \gcd(r_{n-1}, r_n) = \gcd(r_n, 0) = r_n.
\]
Representation of Integers

- \(b = 2 \) - binary expansion

- \(b = 8 \) - octal expansion

- \(b = 16 \) - hexadecimal expansion. In this case \(a = 10, b = 11, c = 12, d = 13, e = 14, \) and \(f = 15. \)

Theorem 11 Let \(b \) be a positive integer greater than one. Then if \(n \) is a positive integer, it can be expressed uniquely in the form

\[
n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0
\]
where \(k \) is a nonnegative integer, \(a_0, a_1, \ldots, a_k \) are nonnegative integers that are less than \(b \).
Algorithms for integer operations

Suppose $a = (a_{n-1}a_{n-2} \ldots a_1a_0)_2$ and $b = (b_{n-1}b_{n-2} \ldots b_1b_0)_2$.

- Addition of a and b:

 procedure add (a, b: positive integers)
 1. $c := 0$
 2. for $j := 0$ to $n - 1$
 3. begin
 4. $d := \lfloor (a_j + b_j + c_j)/2 \rfloor$
 5. $s_j := a_j + b_j + c_j - 2d$
 6. $c := d$
 7. end
 8. $s_n := c$

 Number of additions $= O(n)$.
• Multiplication.

procedure multiply\(a, b: \text{ positive integers}\)
1. for \(j := 0\) to \(n - 1\)
2. begin
3. if \(b_j = 1\) then \(c_j := a\) shifted \(j\) places
4. else \(c_j := 0\)
5. end
6. \(p := 0\)
7. for \(j := 0\) to \(n - 1\)
8. \(p := p + c_j\)

Number of arithmetic operations = \(O(n^2)\)

Question: Can you do better than \(n^2\)?