2. Basic Structures
2.1 Sets

Definition 1 A set is an unordered collection of objects.

Important sets: \(\mathbb{N}, \mathbb{Z}, \mathbb{Z}^+, \mathbb{Q}, \mathbb{R} \).

Definition 2 Objects in a set are called elements or members of the set. A set is said to contain its elements.

Definition 3 Two sets are equal if they contain the same elements.

Definition 4 The set \(A \) is a subset of \(B \) if and only if every element of \(A \) is also an element of \(B \). We will denote this by \(A \subseteq B \).
Theorem 1 For any set S: (1) $\emptyset \subseteq S$, (2) $S \subseteq S$.

Definition 5 Let S be a set. If there are exactly n distinct elements in S then we say S is a finite set and that the cardinality of S is n. Cardinality of set S is denoted by $|S|$.

A set is *infinite* if it is not finite.

Definition 6 Given the set S, the power set $P(S)$ of S is the set of all subsets of S.

Fact 2 If $|S| = n$ then $|P(S)| = 2^n$.
Definition 7 The ordered n-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as the second, \ldots, and a_n as its nth element.

Definition 8 Let A, B be sets. Then the Cartesian product of A and B, $A \times B$ is the set

$$A \times B = \{(a, b) | a \in A \land b \in B\}.$$

Definition 9 The Cartesian product of sets A_1, \ldots, A_n is the set

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) | a_i \in A_i\}.$$
2.2 Set Operations

Operations:

- **Union**: Let A, B be sets. Then $A \cup B = \{ x | x \in A \lor x \in B \}$.

- **Intersection**: Let A, B be sets. Then $A \cap B = \{ x | x \in A \land x \in B \}$.

- **Difference**: Let A, B be sets. Then $A \setminus B = \{ x | x \in A \land x \neq B \}$.

- **Complement**: Let U be the universal set. The complement of the set A, $\bar{A} = U \setminus A$.
Fact 3 For any finite sets A and B,

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Two sets are called disjoint if their intersection is an empty set. Some set identities:

- $A \cup \emptyset = A$
- $A \cap \emptyset = \emptyset$
- $(\overline{A}) = A$
\begin{itemize}
\item $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
\item $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
\item $\overline{A \cup B} = \overline{A} \cap \overline{B}$
\item $\overline{A \cap B} = \overline{A} \cup \overline{B}$
\end{itemize}
Generalized unions and intersections:

Let A_1, A_2, \ldots, A_n be sets.

$$\bigcup_{i=1}^{n} A_i = \{x | (x \in A_1) \lor (x \in A_2) \lor \ldots \lor (x \in A_n)\}$$

$$= \{x | \exists 1 \leq i \leq n x \in A_i\}$$

$$\bigcap_{i=1}^{n} A_i = \{x | (x \in A_1) \land (x \in A_2) \land \ldots \land (x \in A_n)\}$$

$$= \{x | \forall 1 \leq x \leq n x \in A_i\}$$
Example 1 Let \(A_i = \{i+5, i+6, \ldots, \} \). Find \(\bigcup_{i=1}^{n} A_i \) and \(\bigcap_{i=1}^{n} A_i \).

\[
\bigcup_{i=1}^{n} A_i = \{x| \exists_i x \in A_i\} = \{6, 7, 8, \ldots\}
\]

\[
\bigcap_{i=1}^{n} A_i = \{x| \forall_i x \in A_i\} = \{n + 5, n + 6, \ldots\}
\]
Example 2 Let $A_i = \{1, \ldots, 2i\}$. Find $\bigcup_{i=1}^{n} A_i$ and $\bigcap_{i=1}^{n} A_i$.

\[\bigcup_{i=1}^{n} A_i = \{x|\exists_i x \in A_i\} = \{1, 2, \ldots, 2n\} \]

\[\bigcap_{i=1}^{n} A_i = \{x|\forall_i x \in A_i\} = \{1, 2\} \]
Observations:

(1) $\forall 1 \leq j \leq n$

$$A_j \subseteq \bigcup_{i=1}^{n} A_i$$

(2) $\forall 1 \leq j \leq n$

$$\bigcap_{i=1}^{n} A_i \subseteq A_j$$

(3) If $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n$ then

$$\bigcup_{i=1}^{n} A_i = A_n, \quad \bigcap_{i=1}^{n} A_i = A_1.$$
Computer representation of sets:
If a universal set $U = \{u_1, \ldots, u_n\}$ we can represent subsets of U by binary strings of length n, where for set $A \subseteq U$ the ith but a_i in the representation is equal to 1 if and only if $u_i \in A$.
2.3 Functions

Definition 10 Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to every element of A. We write $f(a) = b$ if b is the unique element of B assigned by f to the element a. If f is a function from A to B, we write $f : A \to B$.

If $f : A \to B$, then A is called a *domain* of f and B is called a *co-domain* of f. If $f(a) = b$ then b is called an *image* of a and a is called a *pre-image* of b. The *range* of f is the set of all images of elements in A.

Definition 11 Let $f : A \to B$ be a function and let $S \subseteq A$. The
image of S is defined as

$$f(S) = \{f(s) | s \in S\}.$$
Types of functions:

Definition 12 A function \(f \) is said to be one-to-one (or injective) if and only if \(f(x) = f(y) \) implies that \(x = y \) for all \(x, y \) in the domain of \(f \).

\[
\forall x \forall y ((f(x) = f(y)) \rightarrow (x = y)).
\]

Definition 13 A function \(f \) from \(A \) to \(B \) is called onto (or surjective) if for every \(b \) from \(B \) there is an \(a \) in \(A \) such that \(f(a) = b \).

\[
\forall b \in B \exists a \in A f(a) = b.
\]

Definition 14 Function \(f \) is called a one-to-one correspondence (or a bijection) if it is both injective and surjective.
Injective function

Surjective Function

Bijective function
Definition 15 A function f whose domain and codomain are subsets of the set of real numbers is called

- **strictly increasing** if $f(x) < f(y)$ whenever $x < y$ and x, y are in the domain of f.

- **strictly decreasing** if $f(x) > f(y)$ whenever $x < y$ and x, y are in the domain of f.
Operations:

- **Basic operations**: addition and multiplication.

- **Inverse function**: Let f be a bijection from A to B then an inverse function is the function $f^{-1} : B \rightarrow A$ such that f assigns to b a unique element a such that $f(a) = b$. A function that is not a bijection does not have an inverse.

- **Composition of functions**: Let g be a function from A to B and let f be a function from B to C. Composition of f and g is the function $f \circ g : A \rightarrow C$ defined as $(f \circ g)(a) = f(g(a))$.
• A function $id_A : A \to A$ such that for every $a \in A, id_A(a) = a$ is called an identity on A.

Important functions:

1. **Floor function:** $f(x) = \lfloor x \rfloor$ is equal to the largest integer less than or equal to x.
2. **Ceiling function:** \(f(x) = \lceil x \rceil \) is equal to the smallest integer larger than or equal to \(x \).
Example 3 Graph the following functions:

1. \(f(x) = x - \lfloor x \rfloor \)

2. \(f(x) = \lceil x \rceil - \lfloor x \rfloor \)
2.4 Sequence and summations

Definition 16 A sequence is a function from the set of nonnegative (or positive) integers to some set S.

Two special sequences:

- arithmetic progression: $a, a + d, a + 2d, a + 3d, \ldots$

- geometric progression: $a, ar, ar^2, ar^3, \ldots$
Summations:

\[\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \ldots + a_n. \]

Two special summations:

- The sum of the first \(n+1 \) terms of the arithmetic progression \(a, a + d, a + 2d, a + 3d, \ldots \) is
 \[(n + 1)a + \frac{d(n + 1)n}{2}. \]

- The sum of the first \(n+1 \) terms of the geometric progression
when $r \neq 1$ and

\[
\frac{ar^{n+1} - a}{r - 1}
\]

when $r = 1$.

when $r \neq 1$ and

\[
(n + 1)a
\]
Theorem 4

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}. \]

\[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}. \]

\[\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}. \]