Distributed algorithms and graph theory

Andrzej Czygrinow
Department of Mathematics and Statistics
Arizona State University

March 2, 2004
Outline of the talk

- Distributed networks.
- Vertex coloring (cycles).
- Edge coloring.
- Approximating the maximum matching.
Models of computations in CS

- Sequential RAM model.

- Parallel shared memory model.

- Distributed model.
Distributed network

1. Undirected graph:
 - Vertices - processors
 - Edges - communication links

2. We assume that there is a global clock and computations proceed in rounds.

3. In a round each vertex can:
 - Send information to its neighbors.
 - Receive information from its neighbors.
 - Perform some computations.
Goal: Estimate a given global function of the distributed network (say an independent set of vertices).

Restrictions: We must compute this function "fast". Number of rounds = poly-logarithmic in n.
An algorithm should be deterministic.
Problems:

- Function may not satisfy the required property.

- Not clear how to fix it: symmetry breaking.
Obvious: If the diameter of a graph is K then we can do the computations in $O(K)$ rounds.

In particular if diameter is $O(\log n)$ then there is an efficient solution.
Vertex Coloring Problem. Let $G = (V, E)$ be a graph. Find the least k and function $f : V \to \{1, \ldots, k\}$ such that if $vw \in E$ then $f(u) \neq f(v)$.

"Easy" problem: Color a cycle.
Theorem 1 (Linial 92) Any distributed algorithm that colors a cycle on n vertices with 3 colors requires $\Omega(\log^* n)$ rounds.

Theorem 2 (Cole-Vishkin 86) There is a distributed algorithm which colors a cycle on n vertices with 3 colors and runs in $O(\log^* n)$ rounds.

Theorem 3 (Linial 92) Any distributed algorithm that colors a cycle on $2n$ vertices with 2 colors requires $\Omega(n)$ rounds.

In general:

Theorem 4 (Linial 92) There is a distributed algorithm which colors a graph on n vertices with $O(\Delta^2)$ colors and runs in $O(\log^* n)$ rounds.
Idea of the proof of Theorem 1

1. After t steps of the execution of a distributed algorithm a vertex x can know data from $2t$ vertices within distance t of x. Consider (x_1, \ldots, x_{2t+1}).

2. Algorithm that runs in t steps is therefore a coloring of these vectors with three colors.

3. Consider graph $B_{t,n}$ with vertices $=$ vectors of length $2t+1$ as above and two vectors X and Y connected if $X = (x_1, \ldots, x_{2t}, x)$ and $Y = (y, x_1, \ldots, x_{2t})$.

4. Distributed algorithm is a coloring of this graph with three colors... which is proper!
5. If $X = (x_1, \ldots, x_{2t}, x)$ and $Y = (y, x_1, \ldots, x_{2t})$ receive the same color then the coloring of the cycle fails if

$$y, x_1, \ldots, x_{2t}, x$$

is a segment in the cycle.

6. But $\chi(B_{t,n}) = \Omega(\log^{(2t)} n)$.
Idea of the proof of Theorem 2

1. Start with a proper coloring and in each iteration reduce the number of colors.

2. To start, a vertex v colors itself with $ID(v)$.

3. In each iteration, vertex v gathers colors of all its neighbors u_1, u_2 and writes them in binary expansions.

4. Let $d(u_i, v)$ be the position of the first bit (from left to right) on which the colors of u_i and v differ. Let $b_v(u_i)$ be the value of the bit in the color of v.

5. Vertex v colors itself with a vector

$$[(d(u_1, v), b_v(u_1)), (d(u_2, v), b_v(u_2))].$$
1. How many bits a vertex needs to write its new color?

\[2(1 + \log(BITS)) \]

where \(BITS \) is the number of bits used to write a color in the previous iteration.

The number of colors is rapidly shrinking!

2. The coloring is proper. Take vectors of \(u \) and \(v \). If there is an \(i \) such that \(d_i(v) \neq d_i(u) \) then two vectors are different. Otherwise look at the position \(j \) such that \(u_j = u \). Then \(d_j(v) = d_j(u) \) (Distances are the same).

But \(b_j(v) \neq b_j(u) \) (Definition of \(d(u_j, v) \)).
Edge coloring Let $G = (V, E)$ be a graph. Find a number L and function $f : E \rightarrow \{1, \ldots, L\}$ such that edges that share an endpoint receive different colors.

Chromatic index of G, $\chi'(G)$, is the least such L.

Theorem 5 (Vizing) \hspace{1cm} \Delta(G) \leq \chi'(G) \leq \Delta(G) + 1.$

Problem 1 (Panconesi) Does there exist an efficient distributed algorithm which colors a graph G with $O(\Delta(G))$ colors?
Theorem 6 (C., Hanckowiak, Karonski) There is a distributed algorithm which in $O(\log^4 n)$ rounds finds a proper edge-coloring with $O(\Delta \log n)$ colors.

A bipartite graph $H = (A, B, E)$ is called a D-block if for every vertex $a \in A$,
\[\frac{D}{2} < \deg_H(a) \leq D. \]

Definition 1 An (α, β)-spanner of a D-block $H = (A, B, E)$ is a sub-graph $S = (A', B, E')$ of H such that the following conditions are satisfied.

1. $|A'| \geq \alpha |A|$.

2. For every vertex $a \in A'$, $\deg_S(a) = 1$.

3. For every vertex $b \in B$, $\deg_S(b) < \frac{\beta}{D} \deg_H(b) + 1$.
Theorem 7 Let $H = (A, B, E)$ be a D-block. There is a distributed algorithm which finds in $O(\log^3 n)$ rounds a family of $O(D)$ disjoint, $(\frac{1}{2}, 16)$-spanners of H.

Idea: Color edges of the graph using two colors 0,1 so that for each v the degree of v in the monochromatic graph is approximately $\deg(v)/2$. Process is repeated $O(\log D)$ times. This sequence of bits (for example 0010101) determines one spanner from the family.
How to color a block?

Three observations:

1. Each spanner can color itself using $O(\Delta/D)$ colors.

2. Family can be colored using $O(\Delta)$ colors.

3. Each spanner contains $|A|/2$ vertices from A. The number of edges in the family is at least $c|E|$ for some constant c.
How to color a bipartite graph?

Given: bipartite graph \((A, B, E)\).

Method:
1. Split a graph into \(O(\log \Delta)\) blocks. The \(i\)th block, \(A_i\) = vertices with degree in \((\Delta/2^i, \Delta/2^{i-1}]\).
2. Compute families of spanners in each block (in parallel) and color them

3. For every "large" star if there are edges in the star with the same color, then un-color all but the one that touches the block with the largest value of D.
Let E_i be the number of edges in the ith block. Then in each iteration

$$\sum_i |E_i| D_i$$

decreases by a constant fraction.
An edge from the \(i \)th block has "weight" \(D_i \) in the formula above, but the sum of weights of edges from blocks 2, 3, 4, \ldots is

\[
\Delta \sum_{i \geq 1} \frac{1}{2^i} < \Delta
\]

On the other hand, we keep the weight of at least \(\Delta/2 \).

We "keep" at least 1/3 of the value of the sum.
How to color a graph?
1. Give orientation to edges.
2. Split each vertex into two.
3. Color the bipartite graph.
4. Glue the vertices together. One can get monochromatic cycles or paths. Find a large matching in each monochromatic component.
Matchings
A matching is a sub-set of edges M such that no two edges from M share an endpoint.

Maximal matching - matching M such that there is no M' such that M is a proper subset of M'.

Maximum matching - matching M such that $|M|$ is the largest possible.

Theorem 8 (Hanckowiak, Karonski, Panconesi)
There is a distributed algorithm which finds a maximal matching in $O(\log^4 n)$ rounds.

Observation: If M is maximal, M^* maximum then $|M| \geq \frac{1}{2} |M^*|$.

Problem: Can you find a larger matching M?
Theorem 9 (C., Hanckowiak, Szymanska) There is a distributed algorithm which finds a matching M such that
\[|M| \geq \frac{2}{3}|M^*|. \]
The algorithm runs in $O(\log^6 n)$ rounds.

Theorem 10 (C., Hanckowiak) Let G be a graph without cycles of lengths $3, 5, \ldots, 2k-1$. Then there is a distributed algorithm which finds a matching M such that
\[|M| \geq \frac{k}{k+1}|M^*|. \]
The algorithm runs in $O(\log^D n)$ rounds, where $D = D(k)$.
Idea of the algorithm

• Find a maximal matching M using Theorem 8.

• Find a maximal set of M-augmenting paths.

• Augment the paths.
Finding paths requires work

- Reduce graph G and matching M to a special layered graph.

- Find maximal set of paths in the layered graph.

- Translate the paths back to G.
Reduction

G

Layered graph
Paths in the layered graph

- Iterate over blocks.
- In a block find a spanner.
- Create an auxiliary multi-graph.
- Call the same algorithm recursively.
- In other words: somewhat complicated.
Translation

- Paths in the layered graph correspond to paths in graph G (there are no odd cycles)

- ... but paths do not need to be disjoint.

- Consider the graph of paths.

- Find a "maximal weighted independent set" in the graph of paths.
Problems and future work

• Edge coloring using $O(\Delta)$ colors.

• Approximating the maximum matching in arbitrary graphs.

• Faster algorithms.

• **Problem:** Maximal Independent Set.