2-factors of bipartite graphs with asymmetric minimum degrees

Andrzej Czygrinow*, Louis DeBiasio, H. A. Kierstead†
Department of Mathematics and Statistics
Arizona State University
Tempe, AZ 85287
Submitted 10/31/08

Abstract

Let G and H be balanced U, V-bigraphs on $2n$ vertices with $\Delta(H) \leq 2$. Let k be the number of components of H, $\delta_U := \min\{\deg_G(u) : u \in U\}$ and $\delta_V := \min\{\deg_G(v) : v \in V\}$. We prove that if n is sufficiently large and $\delta_U + \delta_V \geq n + k$ then G contains H. This answers a question of Amar in the case that n is large. We also show that G contains H even when $\delta_U + \delta_V \geq n + 2$ as long as n is sufficiently large in terms of k and $\delta(G) \geq \frac{n}{200k} + 1$.

1 Introduction

This paper is motivated by several lines of research. Let C_n^r (P_n^r) be the r-th power of a cycle (path) on n vertices C_n (P_n). In attempt to inspire a new proof of the Hajnal-Szemerédi theorem, Seymour made the following conjecture:

Conjecture 1.1 (Seymour [18]). If G is a graph on n vertices with $\delta(G) \geq \frac{r}{r+1}n$, then $C_n^r \subseteq G$.

Note that the case $r = 1$ is Dirac’s Theorem and the case $r = 2$ is Pósa’s Conjecture. Komlós, Sárközy and Szemerédi [13, 14] have used Szemerédi’s Regularity Lemma [19] and their own Blow-up Lemma [12] to prove Seymour’s conjecture for huge graphs, however even Pósa’s Conjecture remains open for small graphs.

Chau generalized the minimum degree condition in Seymour’s conjecture to an Ore-type degree condition.

Conjecture 1.2 (Chau [6]). Suppose G is a graph on n vertices such that $\deg(x) + \deg(y) \geq \frac{n}{r+1} - \frac{1}{r+1}$ for all non-adjacent pairs of vertices $x, y \in V(G)$.

(i) If $\delta(G) = \frac{n+1}{r+1}n + 2$ or $\delta(G) = \frac{n+1}{r+1}n + \frac{5}{3}$, then $P_n^r \subseteq G$.

(ii) If $\delta(G) > \frac{n+1}{r+1}n + 2$, then $C_n^r \subseteq G$.

*Research of this author is supported in part by NSA grant H98230-08-1-0046
†Research of this author is supported in part by NSA grant H98230-08-1-0069
When \(r = 1 \), the condition \(\deg(x) + \deg(y) \geq \frac{2n}{r+1} n - \frac{r-1}{r+1} \) is Ore’s condition and thus \(C_n^r \subseteq G \) with no further restrictions on the minimum degree. Chau proved Conjecture 1.2 for huge graphs when \(r = 2 \).

The following fundamental graph packing conjecture was made independently by Bollobás-Eldridge [4] and Catlin [5]. We state it here in a complementary form.

Conjecture 1.3 (Bollobás-Eldridge [4], Catlin [5]). If \(G \) and \(H \) are graphs on \(n \) vertices with \(\Delta(H) \leq r \) and \(\delta(G) \geq \frac{rn - 1}{r+1} \), then \(H \subseteq G \).

Call a graph on \(n \) vertices \(r \)-universal if it contains every graph \(H \) on \(n \) vertices with \(\Delta(H) \leq r \), then Conjecture 1.3 states that \(G \) is \(r \)-universal if \(\delta(G) \geq \frac{rn - 1}{r+1} \). The case \(r = 1 \) follows from the path version of Dirac’s Theorem: Since \(\delta(G) \geq \frac{n-1}{2} \), \(G \) contains the 1-universal graph \(P_n \). Aigner and Brandt [2] proved Conjecture 1.3 for the case \(r = 2 \). Fan and Kierstead [10] proved the path version of Pósa’s Conjecture: If \(\delta(G) \geq \frac{2n-1}{3} \) then \(G \) contains the square \(P_n^2 \) of \(P_n \). Since \(P_n^2 \) is 2-universal, we have a stronger version of the Aigner-Brandt Theorem: If \(\delta(G) \geq \frac{2n-1}{3} \) then \(G \) contains a 2-universal graph with maximum degree 4. Csaba, Shokoufandeh and Szemerédi [7] have proved Conjecture 1.3 for large graphs when \(r = 3 \).

Kostochka and Yu generalized the minimum degree condition in the Bollobás-Eldridge conjecture to an Ore-type degree condition.

Conjecture 1.4 (Kostochka-Yu [15]). If \(G \) and \(H \) are graphs on \(n \) vertices with \(\Delta(H) \leq r \) and \(\deg(x) + \deg(y) \geq \frac{2(n-1)}{r+1} \) for all non-adjacent pairs of vertices \(x, y \in V(G) \), then \(H \subseteq G \).

The case \(r = 1 \) follows from the path version of Ore’s theorem: Since \(\deg(x) + \deg(y) \geq n - 1 \) for all non-adjacent pairs of vertices \(x, y \in V(G) \), \(G \) contains the 1-universal graph \(P_n \). Kostochka and Yu [16] proved Conjecture 1.4 for the case \(r = 2 \).

El-Zahar made the following conjecture.

Conjecture 1.5 (El-Zahar [9]). If \(G \) is a graph on \(n \) vertices with \(\delta(G) \geq \sum_{i=1}^{k} \left\lceil \frac{1}{2} n_i \right\rceil \) where \(n_i \geq 3 \) and \(n = \sum_{i=1}^{k} n_i \), then \(G \) contains \(k \) disjoint cycles of lengths \(n_1, \ldots, n_k \).

El-Zahar proved that if \(G \) is a graph on \(n \) vertices with \(\delta(G) \geq \left\lceil \frac{1}{2} n_1 \right\rceil + \left\lceil \frac{1}{2} n_2 \right\rceil \) where \(n_1, n_2 \geq 3 \) and \(n = n_1 + n_2 \), then \(G \) contains two disjoint cycles of lengths \(n_1 \) and \(n_2 \). Abassi [1] used the Blow-up and Regularity Lemmas to prove El-Zahar’s Conjecture for huge \(n \).

Now we focus our attention on bipartite graphs. A \(U, V \)-bigraph is balanced if \(|U| = |V| \). We will call a balanced bipartite graph on \(2n \) vertices \(bi\text{-universal} \) if it contains every balanced bipartite graph \(H \) with \(|H| = 2n \) and \(\Delta(H) = 2 \). Wang made the following conjecture.

Conjecture 1.6 (Wang [20]). Every balanced bipartite graph \(G \) on \(2n \) vertices with \(\delta(G) \geq n/2 + 1 \) is bi-universal.

An \(n \)-ladder, denoted by \(L_n \), is a balanced bipartite graph with vertex sets \(A = \{a_1, \ldots, a_n\} \) and \(B = \{b_1, \ldots, b_n\} \) such that \(a_i \sim b_j \) if and only if \(|i - j| \leq 1 \). We refer to the edges \(a_i b_i \) as rungs and the edges \(a_1 b_1, a_n b_n \) as the first and last rung respectively. It is easily checked that an \(n \)-ladder is a bi-universal graph with maximum degree 3. In this sense, a ladder in a bipartite graph is analogous to a square path in a graph. The first and last author [8] used the Blow-up and Regularity Lemmas to prove Conjecture 1.6 for huge graphs by proving that such graphs contain a spanning ladder.
Finally we consider bipartite graphs with asymmetric minimum degrees. For a U, V-bigraph G, let $\delta_U := \delta_U(G)$ and $\delta_V := \delta_V(G)$ denote the minimum degrees of vertices in U and V respectively. The number of components of G is denoted by $\text{comp}(G)$. Moon and Moser [17] proved that if G is a balanced bipartite graph on $2n$ vertices with $\delta_U + \delta_V \geq n + 1$, then G is hamiltonian. Amar [3] proved the following result about more general 2-factors. If G and H are balanced U, V-bigraphs on $2n$ vertices with $\delta_U + \delta_V \geq n + 2$, $\Delta(H) \leq 2$ and $\text{comp}(H) \leq 2$ then G contains H. As noted in [3], when $\text{comp}(H) \leq 2$ this result is best possible. Amar then made the following conjecture.

Conjecture 1.7 (Amar [3]). Let G and H be balanced U, V-bigraphs on $2n$ vertices with $\Delta(H) \leq 2$. If $\delta_U + \delta_V \geq n + \text{comp}(H)$ then G contains H.

We will prove the following theorems, strengthening Conjecture 1.7 for huge graphs.

Theorem 1.8. Let G and H be balanced U, V-bigraphs on $2n$ vertices with $\Delta(H) \leq 2$. For every integer k there exists $N_0(k)$ such that if $n \geq N_0(k)$, $\delta_U + \delta_V \geq n + 2$, and $\text{comp}(H) \leq k$, then G contains H. Furthermore, if $\delta(G) \geq \frac{1}{200k}n + 1$ then G contains a spanning ladder.

Theorem 1.9. There exists a constant C such that every balanced U, V-bigraph G on $2n$ vertices satisfying $\delta_U + \delta_V \geq n + C$ contains a spanning ladder.

Theorem 1.10. Let G and H be balanced U, V-bigraphs on $2n$ vertices with $\Delta(H) \leq 2$. There exists an integer N_0 such that if $n \geq N_0$ and $\delta_U + \delta_V \geq n + \text{comp}(H)$ then G contains H.

We note that there are no known counterexamples to show that the bound in Amar’s conjecture is tight when $k \geq 3$. In fact, Wang made the following stronger conjecture:

Conjecture 1.11 (Wang [21]). Every balanced U, V-bigraph on $2n$ vertices with $\delta_U + \delta_V \geq n + 2$ is bi-universal.

In Theorem 1.10 we prove Amar’s conjecture for huge graphs, but Theorem 1.8 gives evidence to suggest that a proof of Conjecture 1.11 should ultimately be the goal.

We use the following notation. For $A, B \subseteq V(G)$, $E(A, B)$ is the set of edges with one end in A and the other in B. By $E(A)$ we mean $E(A, V(G) \setminus A)$ and instead of $E(\{a\}, B)$ we will write $E(a, B)$. Let $e(A, B) = |E(A, B)|$, and we will sometimes write $e(a, B)$ as $\deg(a, B)$. For a subgraph $H \subseteq G$, $e(a, H)$ means $e(a, V(H))$. Let $\Delta(A, B) := \max\{e(a, B) : a \in A\}$ and $\delta(A, B) := \min\{e(a, B) : a \in A\}$. We denote the graph induced by A as $G[A]$. Given a tree T, we write xTy for the unique path in T between vertices x and y. We will use the symbol \oplus to denote modular addition, where the modulus will be clear in context.

2 Auxiliary facts

We begin with some facts that we will need throughout the paper.

Lemma 2.1. Let G be a connected balanced U, V-bigraph on $2n$ vertices. Then G contains a path of order $t = \min\{2(\delta_U + \delta_V), 2n\}$.

Proof. Let P be any maximal path with $|P| < t$. It suffices to show that G has a path Q with $|Q| > |P|$. Since P is maximal, the neighborhoods of the ends of P are contained in P. We consider two cases depending on the parity of P. 3
Case 1: \(P = x_1y_1 \ldots x_l y_l \) is an even path. Then \(e(x_1, P) + e(y_l, P) \geq \delta_U + \delta_V > l \). Thus there exists an index \(i \in [l] \) such that \(x_1 \sim y_i \) and \(y_l \sim x_i \). So \(C = x_1 y_1 P y_l x_l P x_l \) is a cycle of length \(2l \). Since \(t \leq 2n \) and \(G \) is connected, some vertex \(z \in P \) has a neighbor \(r \in G - C \). Then \(Q = rz(C-z) \) is a longer path.

Case 2: \(P = x_1 y_1 \ldots x_l y_l x_{l+1} \) is an odd path. Without loss of generality, let \(x_1 \in U \). Set \(P' = P - x_{l+1} \) and consider the components of \(G' = G - P' \). The component containing \(x_{l+1} \) has order 1 and thus more vertices from \(V \) than \(U \). Since \(G' \) is balanced it also has a component \(D \) with more vertices from \(V \) than \(U \). Since \(G \) is connected, there exists a vertex \(r \in D \) that is adjacent to a vertex \(z \in \{x_j, y_j\} \subseteq V(P') \). If possible, we choose \(r \in V \) and with respect to this condition, choose \(r \) so that \(j \) is maximized. Let \(w \) be the predecessor of \(z \) on \(P' \). If \(|D| = 1 \) then \(e(r, P') + e(x_1, P') \geq \delta_U + \delta_V > l \), so there exists an index \(i \in [l] \) such that \(x_1 \sim y_i \) and \(r \sim x_i \). Thus \(Q = r x_i P x_1 y_i P x_{l+1} \) is a path with \(|Q| > |P| \). So we may assume that \(|D| \geq 2 \). Fix a depth first search tree \(T \) of \(D \) that is rooted at \(r \). Let \(b \) be the number of leaves of \(T \) in \(V \). Note that

\[
2|T \cap V| - b \leq |E(T)| = |T| - 1 = |D \cap U| + |D \cap V| - 1
\]

which implies \(b \geq |D \cap V| - |D \cap U| + 1 \geq 2 \). Let \(y \) be a leaf of \(T \) in \(V \) that is distinct from \(r \). Since \(T \) is a depth first search tree, \(N(y) \subset V(yTrU \cap P') \). Let \(m = |V(yTrU) \cap P' \) and let \(i \) be the largest index with \(x_1 \sim y_i \). If \(j > l - m \) then \(Q = yTrz P x_1 \) is a path with \(|Q| = 2(j + m) \geq 2(l + 1) > |P| \). So suppose \(j \leq l - m \). If \(i > l - m \) then \(Q = yTrz P x_i P w \) is a path with \(|Q| \geq 2(i + m) \geq 2(l + 1) > |P| \). Otherwise \(i \leq l - m \). By choice of \(r \) we have \(e(x_1, P y_{l-m}) + e(y, P x_{l-m}) \geq \delta_U + \delta_V > m - l - m \). So there exists an index \(h \in [l - m] \) such that \(x_1 \sim y_h \) and \(y \sim x_h \). Thus \(Q = r Ty r x_h P x_1 y_h P x_{l+1} \) is a path with \(|Q| > |P| \).

Lemma 2.2. Let \(G \) be a balanced \(U, V \)-bigraph on \(2n \) vertices.

(i) If \(e_s \) and \(e_t \) are independent edges and \(\delta(G) \geq \frac{3}{2} n + 1 \) then \(G \) contains a spanning ladder, starting with \(e_s \) and ending with \(e_t \).

(ii) If \(\Lambda = \{L^1, \ldots, L^s\} \) is a set of disjoint ladders in \(G \) such that \(\sum_{L \in \Lambda} |L| = 2t \) and \(\delta(G) \geq \frac{3}{2} n + s + t + 1 \) then \(G \) has a spanning ladder starting with the first rung \(e_1 \) of \(L^1 \), ending with the last rung \(e_2 \) of \(L^s \), and containing each \(L \in \Lambda \).

Proof. (i) Let \(M \) be a 1-factor of \(G \) with \(e_s, e_t \in M \). Define an auxiliary graph \(H = (M, F) \) on \(M \) as follows. If \(uw, xy \in M \) with \(u, x \in U \) then \(u \sim_H x y \) if and only if \(u \sim_G y \) and \(v \sim_G x \). There is a natural one-to-one correspondence between ladders \(u_1 v_1 \ldots u_h v_h \) in \(G \), whose rungs are in \(M \), and paths in \(H \). Also \(|H| = n \) and \(\delta(H) \geq \frac{1}{2} n + 1 \). So \(H \) is hamiltonian connected and thus has a Hamilton path, starting with \(e_s \) and ending with \(e_t \). This path corresponds to the required ladder in \(G \).

(ii) Note that \(\delta(G) \) is large enough to insure that \(G \) has a 1-factor \(M \) containing all the rungs of the ladders \(L^i \). Form \(H \) as in (i). Then each ladder \(L^i \) corresponds to a path \(P_i \) in \(H \) and \(\delta(H) \geq \frac{3}{2} n + s + t + 1 \). Thus any two vertices of \(H \) share \(s \) non-path neighbors. For \(i \in [s-1] \), connect the end \(c_i \) of each \(P_i \) to the start \(b_{i+1} \) of each \(P_{i+1} \) with a non-path vertex \(x_i \) to form a path \(P \subseteq H \) with \(|P| = t + s - 1 \). Let \(H' = H - (P - \{c_{s-1}, x_{s-1}\}) \). Then \(\delta(H') \geq \frac{1}{2} |H'| + 1 \) and so \(H' \) is hamiltonian connected. It follows that \(H' \) contains a Hamilton path \(Q \) starting at \(c_{s-1} \) and ending at \(x_{s-1} \). Then the Hamilton path \(b_1 P_c_{s-1} Q x_{s-1} P c_s \) of \(H \) corresponds to the required ladder in \(G \).
Observe that in the proof of Lemma 2.2(ii) we do not need the degrees of "interior" vertices of \(L^i \) to be large. More precisely, given a ladder \(L \) we define the partition \(V(L) = \text{ext}(L) \cup \tilde{L} \), where \(\text{ext}(L) \) is the set of exterior vertices, and \(\tilde{L} \) is the set of interior vertices. If \(L \) is an initial ladder, let \(\text{ext}(L) \) be the vertices in the last rung. If \(L \) is a terminal ladder, let \(\text{ext}(L) \) be the vertices in the first rung. If \(L \) is not an initial or terminal ladder, let \(\text{ext}(L) \) be the vertices in the first and last rung of \(L \). Note that if \(L \in \{L_1, L_2\} \), then it is possible for \(\tilde{L} = \emptyset \). Set \(I := I(\Lambda) = \bigcup_{L \in \Lambda} \tilde{L} \). Then Lemma 2.2(ii) still holds if we only require \(\deg(v) \geq \frac{3n + t + 4q}{4} + 1 \) for \(v \in V(G) \setminus I \).

Lemma 2.3. Let \(G \) be a balanced \(U, V \)-bigraph on \(2n \) vertices and let \(\Lambda = \{L^1, \ldots, L^s\} \) be a set of disjoint ladders with initial ladder \(L^1 \) and if \(s > 1 \), terminal ladder \(L^s \) such that \(\sum_{L \in \Lambda} |L| = 2t \). Suppose \(\deg(v) \geq d \) for all \(v \notin I(\Lambda) \) and there exists \(Q \subseteq U \cup V \) with \(|Q| \leq q \) such that \(\deg(v) \geq D \) for every \(v \notin Q \cup I(\Lambda) \). If

\[
(i) \quad D \geq \frac{3n + 3s + t + 4q}{4} + 1 \quad \text{and} \quad (ii) \quad d > t + 3q + 2s + n - D.
\]

then \(G \) has a spanning ladder that starts with the first rung \(e_1 \) of \(L^1 \), and, if \(s > 1 \), ends with the last rung \(e_2 \) of \(L^s \).

Proof. Let \(M \) be a matching that saturates \(Q = Q \setminus I \) and avoids the ladders in \(\Lambda \). This is possible since \(q' = |Q'| \leq d - t \) by (ii). We view each edge of \(M \) as a 1-ladder. Let \(\Lambda^+ = \Lambda \cup M \), \(s' = s + q' \) and \(t' = t + q' \). Next we extend each ladder \(L \in \Lambda^+ \) to a new ladder \(\phi(L) \) as follows: let \(\phi(L^1) = L^1 y_1 z_1 \), \(\phi(L^i) = a_i b_i L^i \), and \(\phi(L^i) = a_i b_i L^i y_i z_i \) for \(i \in [s'] \setminus \{1, s\} \) such that \(a_h, b_h, y_h, z_h \notin R \cup R' \) for \(h \in [s'] \), where \(R = \bigcup_{L \in \Lambda^+} V(L) \) and \(R' \) is the set of all previously chosen extension vertices. For example, suppose we want to find \(y_{s'} z_{s'} \) after finding all previous extensions. Let \(u, v \in \text{ext}(L^{s'}) \) be the rung of \(L^{s'} \) that we wish to extend, where \(u, v \in \text{ext}(L^{s'}) \). We have \(|(R \cup R') \cap N(v)| < 2s' + t' \), and so it is possible by (ii) to choose \(y_{s'} \in N(v) \setminus (R \cup R') \). Note that \(Q \cup I(\Lambda) \subseteq R \), and so \(\deg(u) \geq D \). Now since \(D \leq n \) we have \(3s + t + 4q + 4 \leq n \) and thus

\[
|\{(u,v) \in N(u) \cap N(v) : \phi(L) \in \Lambda^+ \}| - (R \cup R')| \geq \frac{1}{2} [n - (s + t + 2q)] + 2 \geq 1.
\]

So by (i) and (1) we may choose \(z_{s'} \in N(u) \cap N(y_{s'}) \setminus (R \cup R') \).

Set \(\Lambda' = \{\phi(L) : L \in \Lambda^+ \} \) and \(t'' = t' + 2s' - 2 \). Then \(s' = |\Lambda'| \) and \(2t'' = \sum_{L \in \Lambda'} |L'| \). By (i)

\[
D \geq \frac{3n + 3s + t + 4q}{4} + 1 \geq \frac{3n + (s + q') + (t + q' + 2s + q')}{4} + 1 \geq \frac{3n + s' + t''}{4} + 1.
\]

Thus by Lemma (2.2), \(Q \subseteq R \subseteq I(\Lambda') \) and our observation preceding the Lemma, we are done. \(\square \)

3 Set-up and organization of the proof

For the rest of this section, let \(G \) and \(H \) be a balanced \(U, V \)-bigraphs on \(2n \) vertices. Assume \(\delta_U + \delta_V \geq n + 2 \) and suppose without loss of generality that \(\delta_U \leq \delta_V \). Note that this implies \(\delta_U \geq 3 \). Define \(\gamma_1 \) by \(\delta_U = \gamma_1 n + 1 \) and \(\gamma_2 \) by \(\gamma_1 + \gamma_2 = 1 \). Assume \(\gamma_1 < \frac{1}{2} < \gamma_2 \), since the case where \(\gamma_1 = \gamma_2 \) was handled in [8]. Also assume \(\Delta(H) \leq 2 \) and \(k = \text{comp}(H) \). Our goal is to show that \(G \) contains \(H \).

The rest of the proof is organized in the following way. Our main task is to prove Theorem 1.8. This proof divides into three main cases. In Section 4 we handle the case that \(\gamma_1 < \frac{1}{2m} \). In this case,
we will show that G contains H for any value of n, but will not prove the existence of a spanning ladder. Otherwise, we consider two cases, the extremal case and the random case. The case is determined by whether G is α-splittable for a sufficiently small α. In Section 5 we define G to be α-splittable if a certain configuration exists in G. The definition is designed to be most useful in the random case where G fails to be α-splittable. In the remainder of Section 5 we show that if G is α-splittable and $\beta \geq 2\sqrt{\alpha}$ then G has a much nicer configuration called a β-partition. In Section 6, we handle the extremal case by showing that for sufficiently small β, we can obtain a spanning ladder from any β-partition. In Section 7 we introduce the Regularity and Blow-up Lemmas. In Section 8 we use these lemmas to prove that in the random case, if n is sufficiently large in terms of α, then G contains a spanning ladder. In Section 9 we use our previous results to complete the proofs of Theorem 1.9 and Theorem 1.10.

4 Pre-extremal Case

In this section, we will show that Theorem 1.8 is true in the case that one of the minimum degrees is very small.

Lemma 4.1. If $\gamma_1 < \frac{1}{200k}$ then G contains H.

Proof. Let $S = \{u \in U : \deg(u) < \frac{n}{10} \}$ and $s = |S|$. Then $\gamma_2 > 1 - \frac{1}{200k}$ and

$$\left(1 - \frac{1}{200k}\right)n^2 \leq \sum_{v \in V} \deg(v) = \sum_{u \in U} \deg(u) < \frac{9}{10}ns + n(n - s)$$

$$s < \frac{1}{20k}n. \quad (2)$$

Since $\delta_U + \delta_V \geq n + 2$, G contains a Hamilton cycle D. Suppose D orders S as x_1, \ldots, x_s, where x_1 is chosen so that $\text{dist}_D(x_1, x_s) > 2$. For each $i \in [s]$, let $w_i x_i y_i \subseteq D$. Since

$$|\{N(w_i) \cap N(y_i) \} \setminus S| \geq \left(1 - \frac{1}{100k} - \frac{1}{20k}\right)n > s,$$

we can choose distinct $z_i \in U$ such that z_i is adjacent to both y_i and $w_i x_i$, if $y_i = w_i x_i$ then $z_i = x_i$, and otherwise $z_i \notin S$. Note that by the choice of x_1 we have $y_i \neq w_1$ and thus $z_i \neq x_1$. Set $C = w_1 x_1 y_1 z_1 \ldots w_s x_s y_s z_s w_1$. Then C is a cycle with length at most $4s < \frac{2n}{k}$. Let $G' = G - (C - \{w_1, z_s\})$. Then G' is a balanced bipartite graph and $G' \subseteq G - S$. Thus

$$\delta(G') \geq \frac{9}{10}n - 2s \geq \frac{3}{4}n + 1 \geq \frac{3 |G'|^2}{4 \cdot 2} + 1.$$

So by Lemma 2.2(1), G' contains a spanning ladder L with first rung $w_1 z_s$. Since $\text{comp}(H) = k$, some component of H must have size at least $\frac{2n}{k}$ and thus $H \subseteq C \cup L \subseteq G$. \hfill \square

5 Splitting

In this section we define the notions of α-splitting and β-partition. We prove that if G has an α-splitting then it has a β-partition.
Definition 5.1. G is α-splittable with α-splitting \((X,Y)\) if \(X \subseteq U\) and \(Y \subseteq V\) satisfy

\[(1) \quad (\gamma_1 - \alpha)n \leq |X| \leq (\gamma_1 + \alpha)n \quad \text{and} \quad (\gamma_2 - \alpha)n \leq |Y| \leq (\gamma_2 + \alpha)n \quad \text{and}
\]

\[(2) \quad e(X,Y) \leq \alpha |X||Y|
\]

Informally, the following lemma asserts that if \(G\) is \(\alpha\)-splittable then \(G\) can almost be split into two balanced complete bipartite graphs so that one has order approximately \(2\gamma_1 n\) and the other has order approximately \(2\gamma_2 n\). Let \((X,Y)\) be an \(\alpha\)-splitting of \(G\) and set \(X = U \setminus X\) and \(Y = V \setminus Y\).

Lemma 5.2. If \(G\) is \(\alpha\)-splittable for \(\alpha \leq (\frac{2}{3})^2\), then there exist partitions \(U = X_0 \cup X_1 \cup X_2\) and \(V = Y_0 \cup Y_1 \cup Y_2\) so that

\[(1) \quad X_1 \subseteq X, Y_1 \subseteq Y, |X_1| = |Y_1| \geq (\gamma_1 - 2\sqrt{\alpha})n \quad \text{and} \quad \delta(G[X_1 \cup Y_1]) \geq (\gamma_1 - 4\sqrt{\alpha})n \quad \text{and}
\]

\[(2) \quad X_2 \subseteq \overline{X}, Y_2 \subseteq Y, |X_2| = |Y_2| \geq (\gamma_2 - 2\sqrt{\alpha})n \quad \text{and} \quad \delta(G[X_2 \cup Y_2]) \geq (\gamma_2 - 4\sqrt{\alpha})n.
\]

Proof. We will show that there exist \(X_1 \subseteq X\) and \(Y_1 \subseteq Y\) satisfying (i) without using \(\gamma_1 < \gamma_2\). Then by the symmetry of \(\gamma_1, X\) and \(\gamma_2, Y\) it will follow that there exists \(Y_2 \subseteq Y\) and \(X_2 \subseteq \overline{X}\) satisfying (ii).

Let \(S = \{x \in X : e(x,Y) < (\gamma_1 - \sqrt{\alpha})n\}\). Then

\[|S|\sqrt{\alpha} n \leq \sum_{x \in X} e(x,Y) = e(X,Y) \leq \alpha |X||Y|
\]

\[|S| \leq \sqrt{\alpha} |X| |Y| \leq \sqrt{\alpha} n.
\]

Let \(T = \{y \in Y : e(y,X) < (\gamma_1 - \sqrt{\alpha})n\}\). Then since \(\sum_{x \in X} e(x,Y) = e(X,Y) = \sum_{y \in Y} e(y,X)\), we have

\[\gamma_1 n |X| - \alpha |X||Y| \leq e(X,Y) \leq (\gamma_1 - \sqrt{\alpha})n |T| + |X|(|Y| - |T|).
\]

Thus

\[|X| - (\gamma_1 - \sqrt{\alpha})n |T| \leq (|Y| - \gamma_1 n + \alpha |Y|) |X|
\]

\[(\sqrt{\alpha} - \alpha) |T| \leq ((\gamma_1 + \alpha - \gamma_1 n + \alpha (\gamma_2 + \alpha)n)(\gamma_1 + \alpha)n
\]

\[1 - \sqrt{\alpha} |T| \leq (1 + \gamma_2 + \alpha)(\gamma_1 + \alpha)\sqrt{\alpha} n
\]

\[|T| \leq \frac{3}{2} \sqrt{\alpha} n.
\]

Choose \(X_1 \subseteq X - S\) and \(Y_1 \subseteq Y - T\) such that \(|X_1| = |Y_1| \geq (\gamma_1 - 2\sqrt{\alpha})\). This is possible by Definition 5.1(i) and the upper bounds (3) and (4) on \(|S|\) and \(|T|\). Thus for every \(x \in X_1, y \in Y_1\)

\[e(x,Y_1) \geq e(x,Y) - |T| \geq ((\gamma_1 - \sqrt{\alpha}) - 2\sqrt{\alpha})n \geq (\gamma_1 - 4\sqrt{\alpha})n \quad \text{and}
\]

\[e(y,X_1) \geq e(y,X) - |S| \geq ((\gamma_1 - \sqrt{\alpha}) - 2\sqrt{\alpha})n \geq (\gamma_1 - 4\sqrt{\alpha})n.
\]

\[\square\]

Definition 5.3. A \(\beta\)-partition of \(G\) is an ordered partition \((X_1, S_1, S_2, X_2, Y_1, T_1, T_2, Y_2)\) with \(U = U_1 \cup U_2, U_1 = X_1 \cup S_1, U_2 = S_2 \cup X_2, V = V_1 \cup V_2, V_1 = Y_1 \cup T_1, V_2 = T_2 \cup Y_2\) such that for \(g := ||S_1| - |T_1||\) and \(h \in [2]\) the following conditions are satisfied

\[7\]
(i) \((\gamma_h - \beta)n \leq |U_h|, |V_h| \leq (\gamma_h + \beta)n\);
(ii) \(|S_1|, |S_2|, |T_1|, |T_2| \leq 2\beta n;\)
(iii) \(\delta(X_h, Y_h), \delta(Y_h, X_h) \geq (\gamma_h - 4\beta)n + g;\)
(iv) \(\delta(S_h, Y_h), \delta(T_h, X_h) \geq 2\beta n + g;\)
(v) if \(|S_i| > |T_i|\) then \(\Delta(U_i, V_j), \Delta(V_j, U_i) < 24\beta n\) for \(i \in [2]\) and \(j = 3 - i.\)

Lemma 5.4. If \(G\) is \(\alpha\)-splittable and \(2\sqrt{\alpha} \leq \beta \leq \frac{2\alpha}{38}\) then \(G\) has a \(\beta\) partition.

Proof. (See Fig. 1.) We start with the partition \(U = X_0 \cup X_1 \cup X_2\) and \(V = Y_0 \cup Y_1 \cup Y_2\) from Lemma 5.2. We describe a process for updating the partition so that conditions (i-v) are satisfied.

Set
\[S_1 = \{ x \in X_0 : e(x, Y_1) \geq 24\beta n \}, S_2 = X_0 \setminus S_1, T_1 = \{ y \in Y_0 : e(y, X_1) \geq 24\beta n \} \text{ and } T_2 = Y_0 \setminus T_1. \]

Clearly (i,ii) hold. Also (iii) holds with \(2\beta n - g\) to spare. Since \(50\beta \leq \gamma_1 \leq \gamma_2\), we have \(e(x, Y_2), e(y, X_2) \geq 24\beta n\) for all \(x \in S_2\) and \(y \in T_2\), and thus (iv) also holds with \(2\beta n - g\) to spare. If (v) holds, we are done, so suppose not. Choose \(i\) such that \(|S_i| > |T_i|\) and set \(j = 3 - i\), then \(0 < g_0 := |S_i| - |T_i| = |T_j| - |S_j| \leq 2\beta n\). We will now move vertices so that after each move, the difference \(|S_i| - |T_i|\) is reduced while (i-iv) continue to hold. Once the difference can no longer be reduced by moving vertices we will claim that (v) holds and then we set \(g := |S_i| - |T_i| \geq 0.\) On each step we attempt to move vertices \(x \in S_i\) with \(e(x, Y_j) \geq 24\beta n\) from \(S_i\) to \(S_j\) and/or vertices \(y \in T_j\) with \(e(y, X_i) \geq 24\beta n\) from \(T_j\) to \(T_i\). If no vertices meet this requirement, then we will attempt to move vertices \(x \in X_i\) with \(e(x, Y_j) \geq 24\beta n\) from \(X_i\) to \(T_j\). Any time a move of this type is made the size of \(X_i\) is reduced, so to ensure that \(|X_h| = |Y_h|\) we must also move any vertex from \(Y_i\) to \(T_i\). Similarly, we may move eligible vertices from \(Y_j\) to \(T_i\) and compensate by moving any vertex from \(X_j\) to \(S_j\). After each move, any of \(|X_h|, |Y_h|, \delta(X_i, Y_i), \delta(Y_i, X_i), \delta(S_i, Y_i), \delta(T_i, X_i)\) may decrease, and \(|S_j|\) and \(|T_j|\) will increase. Note that these parameters may change by only 1 per move. Since we will make at most \(g_0 - g\) moves, (iii,iv) will continue to hold. Furthermore, since \(|S_i|, |T_j|\) will never be increased, \(|U_i|, |V_j|\) may decrease by at most \(g_0 - g\) and \(|U_j|, |V_i|\) may increase by at most \(g_0 - g\), so (i,ii) will continue to hold. When the the process stops, (v) will hold either because \(|S_i| = |T_i|\) or because there are no more eligible vertices to move, in which case condition (v) is satisfied.
6 Extremal case

In this section we prove Theorem 1.8 in the case that \(G \) is \(\alpha \)-splittable for sufficiently small \(\alpha \).

Lemma 6.1. Let \(N_1(k) = 408800k + 1 \). If \(n \geq N_1(k) \), \(\gamma_1 \geq \frac{1}{200k} \), and \(G \) is \(\alpha \)-splittable for \(\alpha = \left(\frac{\gamma_1 n}{200} \right)^2 \), then \(G \) contains a spanning ladder.

Proof. Set \(\beta = 2\sqrt{\alpha} = \frac{\gamma_1 n}{200} \), then by Lemma 5.4 \(G \) has a \(\beta \)-partition \((X_1, S_1, S_2, X_2, Y_1, T_1, T_2, Y_2) \). Since \(\gamma_1 \geq \frac{4}{200k} \) we have
\[
\beta n = \frac{\gamma_1 n}{200} > 7. \tag{5}
\]

Set \(G_i = G[U_i \cup V_i] \) for \(i \in [2] \). For \(L \in \{ L_2, L_3 \} \) we say that \(L \) is a crossing ladder if its first rung is in \(G_1 \) and its last rung is in \(G_2 \). Choose \(i \) so that \(g = |S_i| - |T_i| \geq 0 \) and set \(j = 3 - i \). Roughly, our plan is to find a crossing ladder \(L^0 \) and then find ladders \(L', L'' \) spanning \(G_1, G_2 \) such that the last rung of \(L' \) is the first rung of \(L^0 \) and the last rung of \(L'' \) is the first rung of \(L'' \). However \(G_1, G_2 \) may not be balanced or \(G_1, G_2 \) may have been balanced to begin with, but the crossing ladder created an imbalance. In both of these situations we will need a way of moving vertices between \(G_1 \) and \(G_2 \) so that they may be incorporated into \(L' \) and \(L'' \).

Formally, our plan is to construct a set of pairwise disjoint ladders \(\Lambda = \{ L^0, \ldots, L^s \} \) with \(s \leq g + 1 \leq 2\beta n + 1 \) and \(I = I(\Lambda) = \bigcup_{L \in \Lambda} L \) such that
(a) \(L^0 \) is a crossing ladder,
(b) for all \(p \in [s] \), there exists \(h \in [2] \) with \(\text{ext}(L_p) \subseteq G_h \) and
(c) \(G_1 - I \) is balanced (equivalently, \(G_2 - I \) is balanced).

We may also designate one ladder as an initial ladder for each \(G_h \). Then we will apply Lemma 2.3 to construct a spanning ladder.

We begin with two useful facts. By our degree conditions we have
\[
\forall v, v' \in V \quad |N(v) \cap N(v')| \geq 2\delta_V - n > 2(n/2 + 1) - n = 2 \tag{6}
\]
Since \(\sum_{u \in U} \deg(u) = e(U, V) \geq \delta_V |U| \) and \(\delta_U < \delta_V \), there exists \(u^* \in U \) with \(\deg(u^*) > \delta_V \).

Thus
\[
\exists u^* \in U \forall u \in U \quad |N(u^*) \cap N(u)| \geq \delta_V + 1 + \delta_U - n \geq 3. \tag{7}
\]

Step 1: (Construct a crossing ladder \(L^0 \).) We are done unless
\[
\text{there is no crossing } L_2. \tag{*}
\]
So suppose not, then by (7) there exist vertices \(x_1 \in U_1, x_2 \in U_2 \) such that \(|N(x_1) \cap N(x_2)| \geq 3 \) and
\[
(N(x_1) \cap N(x_2) \subseteq V_1) \cup (N(x_1) \cap N(x_2) \subseteq V_2). \tag{+1}
\]

Let \(y_1, y_2 \in N(x_1) \cap N(x_2) \), by (1) there exists \(q \in [2] \) such that \(\{y_1, y_2\} \subseteq V_q \). Let \(q' = 3 - q \) and \(y_3 \in N(x_{q'}) \cap V_{q'} \). By (6), \(y_2 \) and \(y_3 \) have a common neighbor \(x_3 \neq x_q, x_{q'} \). By (1), \(x_3 \in U_{q'} \). Thus \(L^0 = x_qy_1y_q'x_{q'}y_3x_3y_3 \) is a crossing \(L_3 \). (See Fig. 2)
Step 2: (Construct L^1, \ldots, L^s so that (b) and (c) hold.) For all $u \in U_i$ and $v \in V_j$

$$n + 2 \leq \deg(u) + \deg(v) \leq |V_i| + e(u, V_j) + |U_j| + e(v, U_i) \leq n - g + e(u, V_j) + e(v, U_i).$$

Therefore

$$g + 2 \leq \delta(U_i, V_j) + \delta(V_j, U_i). \quad (8)$$

Case 1: $g = 0$. If G has a crossing L_2, i.e., (\ast) fails, then there is nothing to do. Otherwise, $L^0 = L_3$ and $y_2 \in L^0 \cap V_q$ thus $|U_q \cap L^0| = |V_q \cap L^0| + 1$. Let $x' \in N(y_2) \cap (U_q - x_q)$ and $y' \in N(x_q) \cap (V_q - y_3)$. Since $g = 0$, i and j are interchangeable, so by (8), either x' has a neighbor in $V_{q'}$ or y' has a neighbor in U_q and by (\ast), neither of these possible neighbors can be in L^0. Regardless, there exists an edge $xy \in E(U_q, V_{q'})$ whose ends are not in L^0. Let $y' \in N(x) \cap (V_q \setminus V(L^0))$. By (6), y and y' have a common neighbor x^* with $x^* \neq x, x_h$. By (\ast), $x^* \in U_q$. Set $L^1 = xyx'y^*$ and specify L^1 as the initial ladder for G_q. Note that $\operatorname{ext}(L^1) \subseteq G_q$ and $|U_q \setminus (L^0 \cup L^1)| = |V_q \setminus (L^0 \cup L^1)|$ so we are done.

Case 2: $g \geq 1$. Using Definition 5.3(i,v) and $g \geq 1$ we have

$$\forall v, v^* \in V_j \ |(N(v) \cap N(v^*)) \cap U_j| \geq 2(\gamma_2 - 2\beta)n - |U_j| \geq |U_j| - 50\beta n > \frac{4}{5}|U_j|. \quad (9)$$

If $U_i = U_1$ we have

$$\forall u, u^* \in U_1 \ |(N(u) \cap N(u^*)) \cap V_i| \geq 2(\gamma_1 - 2\beta)n - |V_i| \geq |V_i| - 50\beta n > \frac{4}{5}|V_i|. \quad (10)$$

If $U_i = U_2$ then for all $v \in V_i$, $(\gamma_1 + \beta)n \geq \deg(v, U_1) \geq (\gamma_2 - 2\beta)n$ which implies $\gamma_2 > \gamma_1 \geq \gamma_2 - 25\beta$. In which case we have

$$\forall u, u^* \in U_2 \ |(N(u) \cap N(u^*)) \cap V_2| \geq 2(\gamma_1 - 2\beta)n - |V_2| \geq 2(\gamma_2 - 49\beta)n - |V_2| \geq |V_2| - 100\beta n > \frac{13}{20}|V_2|. \quad (11)$$

Let $m = \max\{\delta(U_i, V_j), \delta(V_j, U_i)\}$ and note that by (8) and $g \geq 1$, we have $m \geq 2$. Also note that by (8), if $g \geq 3$ then $m \geq 3$. It is the case that if $L^0 = L_3$ then $m \geq 3$: if $\delta(V_j, U_i) > 0$, then by (6,\ast), we have $\delta(V_j, U_i) \geq 3$ otherwise $\delta(V_j, U_i) = 0$ and thus $\delta(U_i, V_j) \geq 3$ by (8).

Case 2a: $m = 2$. Then $L^0 = L_2$, $1 \leq g \leq 2$ and $1 \leq \delta(A, B) \leq \delta(B, A) = 2$ for some choice of $\{A, B\} = \{U_i, V_j\}$. Let $A \cup A', B \cup B' \in \{U, V\}$. By Definition 5.3(v) and $g > 0$ there exists
b₁ ∈ B \ V(L⁰) with no neighbor in V(L⁰) ∩ A and two neighbors a₁, a₂ ∈ A. By (9,10,11), a₁ and
a₂ have a common neighbor b₂ ∈ B' \ V(L⁰). Let L¹ = a₁b₁a₂b₂ be the initial ladder for Gₜ, where
b₂ ∈ Gₜ and ext(L¹) ⊆ Gₜ. If g = 1 then |U₁ \ (L⁰ ∪ L¹)| = |V₁ \ (L⁰ ∪ L¹)| and we are done. If
|L¹| = 2 then also δ(A, B) = 2 by (8), and a similar argument yields an initial ladder L² = a₃b₃a₄b₄
for Gₜ₋₁ such that a₃ ∈ A, b₃, b₄ ∈ B, a₄ ∈ A' and L⁰, L¹, L² are disjoint. We have ext(L²) ⊆ Gₜ₋₁
and |U₁ \ (L⁰ ∪ L¹ ∪ L²)| = |V₁ \ (L⁰ ∪ L¹ ∪ L²)| so we are done.

Case 2b: m ≥ 3. By (8) there exists A ∈ \{Uᵣ, Vᵣ\} = \{A, B\} such that e(a, B) ≥ m ≥ 3 for all
a ∈ A. Let M = \{aᵣ, bᵣ, cᵣ, dᵣ : r ∈ [s]\} be a maximal set of disjoint claws with root aᵣ ∈ A
and leaves bᵣ, cᵣ, dᵣ ∈ B. Then every vertex in \bar{A} = A \ \{aᵣ : r ∈ [s]\} has at least m − 2 neighbors in
N = \{bᵣ, cᵣ, dᵣ : r ∈ [s]\}. Suppose s ≤ g. Then using Definition 5.3(i,v), g ≤ 2βn and g ≤ 2m − 2
(from (8)), we note

\[(m − 2)((γ₁ − β)(n − s)) ≤ |E(\bar{A}, N)| ≤ 3s \cdot 24βn.\]

Thus
\[γ₁ ≤ 72β \cdot \frac{g}{m − 2} + \frac{s}{n} ≤ 72β \cdot \frac{2m − 2}{m − 2} + 3β ≤ 291β < γ₁,\]

a contradiction. So we conclude that s ≥ g + 1. Choose B' so that \{B, B'\} = \{Uᵣ, Vᵣ\} for some
r ∈ [2]. Let g' := \|B \cap L⁰| − |B' ∩ L⁰| and note that g − 1 ≤ g' ≤ g + 1. In order to balance Gₜ − L⁰
we build a set of disjoint 3-ladders

Λ(M) = \{aᵣ, bᵣ, cᵣ, dᵣ : r ∈ \{g'\}, aᵣ, bᵣ, cᵣ, dᵣ \in M and xᵣ, yᵣ \in B'\}.

This is possible by s ≥ g + 1, (9,10,11) and

\[|(N(bᵣ) ∩ N(cᵣ)) \cap (B' \cap L⁰)|, |(N(cᵣ) ∩ N(dᵣ)) \cap (B' \cap L⁰)| ≥ \frac{13}{20}|B'| − 2 ≥ 2g'.\]

Thus |Uᵣ \ (L⁰ ∪ I(Λ(M)))| = |Vᵣ \ (L⁰ ∪ I(Λ(M)))| and ext(L) ⊆ Gₜ for all L ∈ Λ(M) so we are
done.

Step 3: (Construct the spanning ladder.) Let Λ be the set of ladders constructed in Steps 1 and
2 and set I := I(Λ). Let Λₜ = \{L ∈ Λ : ext(L) ⊆ Gₜ\} and Gₜ = (Gₜ − I) ∪ \bigcup Λₜ for h ∈ [2]. Note
that G₁', G₂' are balanced and G₁' ∩ G₂' = G = L⁰. For each ladder L ∈ Λₜ there is a unique vertex
v' ∈ L ∩ V(Gₜ₂). Since v' ∈ L, we are unconcerned about its degree in Gₜ so we add this vertex to
the appropriate exceptional set (Sₜ or Tₜ) in Gₜ'.

Let e₁ and e₂ be the first and last rungs of L⁰, which we will specify as the terminal ladders in
G₁' and G₂' respectively. It will suffice to show using Lemma 2.3 that each Gₜ' has a spanning
ladder, starting at its initial ladder, if it is specified in Case 1 or Case 2a, and ending at its terminal
ladder. Let s' := |Λₜ| ≤ g + 1 and t' := \frac{1}{3} \bigcup Λₜ ≤ 3(g + 1). Recall that g = |Sₜ| − |Tₜ|. Since
we only add vertices to Sₜ and Tₜ and L₀ ∩ V(Gₜ') = \emptyset, we have \n' := \frac{1}{3} |Gₜ'| ≤ (γₜ − 4β)n. Let
Q := \{v ∈ V(Gₜ') : \deg(v) < D\}, where D := (γₜ − 4β)n − 1. By Definition 5.3(iii), Q ⊆ Sₜ ∪ Tₜ.
Thus, by Definition 5.3(ii), q' := |Q| ≤ 4βn − g. By Definition 5.3(iii,iv), if v ∈ V(Gₜ') \ I then
d := 22βn − 1 ≤ 22βn + g − s' ≤ \deg(v, Gₜ'). Thus Gₜ' has the desired spanning ladder by Lemma
2.3, since

\[\frac{3n' + 3s' + t' + 4q'}{4} + 1 ≤ \frac{3γₜn + 23βn + 10}{4} ≤ D \quad \text{and} \quad t' + 3q' + 2s' + n' − D ≤ 21βn + 6 < d.\]

7 The Regularity and Blow-up Lemmas

In this section we review the Regularity and Blow-up Lemmas. Let \(\Gamma \) be a simple graph on \(n \) vertices. For two disjoint, nonempty subsets \(U \) and \(V \) of \(V(\Gamma) \), define the density of the pair \((U, V)\) as

\[
d(U, V) = \frac{e(U, V)}{|U||V|}.
\]

Definition 7.1. A pair \((U, V)\) is called \(\epsilon \)-regular if for every \(U' \subseteq U \) with \(|U'| \geq \epsilon |U| \) and every \(V' \subseteq V \) with \(|V'| \geq \epsilon |V| \), \(|d(U', V') - d(U, V)| \leq \epsilon \). The pair \((U, V)\) is \((\epsilon, \delta)\)-super-regular if it is \(\epsilon \)-regular and for all \(u \in U \), \(\deg(u, V) \geq \delta |V| \) and for all \(v \in V \), \(\deg(v, U) \geq \delta |U| \).

First we note the following facts that we will need.

Lemma 7.2. If \((U, V)\) is an \(\epsilon \)-regular pair with density \(\delta \), then for any \(Y \subseteq V \) with \(|Y| \geq \epsilon |V| \) there are less than \(\epsilon |U| \) vertices \(u \in U \) such that \(\deg(u, Y) < (\delta - \epsilon)|Y| \).

Proposition 7.3. If \((U, V)\) is a balanced \(\epsilon \)-regular pair with density \(\delta \geq 2\sqrt{\epsilon} > 0 \) and subsets \(A, C \subseteq U \), \(B, D \subseteq V \) of size at least \(\frac{1}{2}\epsilon |U| \) then there exist \(a \in A, b \in B, c \in C, d \in D \) with \(abcd a = C_4 \).

Lemma 7.4 (Slicing Lemma). Let \((U, V)\) be an \(\epsilon \)-regular pair with density \(\delta \), and for some \(\lambda > \epsilon \) let \(U' \subseteq U \), \(V' \subseteq V \), with \(|U'| \geq \lambda |U| \), \(|V'| \geq \lambda |V| \). Then \((U', V')\) is an \(\epsilon' \)-regular pair of density \(\delta' \) where \(\epsilon' = \max\{\frac{\epsilon}{10}, 2\epsilon\} \) and \(\delta' \geq \delta - \epsilon \).

Lemma 7.5 (Augmenting Lemma). Let \((U, V)\) be an \(\epsilon \)-regular pair. Suppose that \(U' = U \cup S \) and \(V' = V \cup T \), where \(|S| \leq \mu|U| \), \(|T| \leq \mu|V| \), \(S \cap V' = \emptyset = T \cap U' \), and \(0 < \mu < \epsilon \). Then \((U', V')\) is an \(\epsilon' \)-regular pair, where \(\epsilon' = \max\{\frac{\mu}{10}, 6\epsilon\} \).

Definition 7.6. A partition \(\{V_0, V_1, \ldots, V_t\} \) of \(V(\Gamma) \) is called \(\epsilon \)-regular if the following conditions are satisfied:

(i) \(|V_0| \leq \epsilon |V| \).

(ii) For all \(i, j \in [t] \), \(|V_i| = |V_j| \).

(iii) All but at most \(\epsilon t^2 \) of pairs \((V_i, V_j)\), \(1 \leq i, j \leq t \), are \(\epsilon \)-regular.

The parts of the partition are called clusters. Note that the cluster \(V_0 \) plays a distinguished role in the above definitions and is usually called the exceptional cluster (or class). Our main tool in the proof will be the Regularity Lemma of Szemerédi [19] which asserts that for every \(\epsilon > 0 \) every graph which is large enough admits an \(\epsilon \)-regular partition into a bounded number of clusters.

Lemma 7.7 (Regularity Lemma). For every \(\epsilon > 0 \) there exists \(N := N(\epsilon, m) \) and \(M := M(\epsilon, m) \) such that every graph on at least \(N \) vertices admits an \(\epsilon \)-regular partition \(\{V_0, V_1, \ldots, V_t\} \) with \(m \leq t \leq M \).

In the next section we will want a regular partition of a bipartite graph so we will use the following formulation (see for example [8]).
Corollary 7.8 (Regularity Lemma - Bipartite Case). For every $\epsilon > 0$ there exists $N := N(\epsilon)$ and $M := M(\epsilon)$ such that every balanced U, V-bigraph on at least $2N^2$ vertices admits an ϵ-regular partition $\{U_0, U_1, \ldots, U_t\} \cup \{V_0, V_1, \ldots, V_t\}$ with $t \leq M$ satisfying

(i) $|U_0| = |V_0| \leq \epsilon n$,

(ii) for all $i, j \in [t]$, $(1 - \epsilon)^n \leq |U_i| = |V_j| \leq \frac{\epsilon}{t}$ and

(iii) for all $U_i \in \{U_1, \ldots, U_t\}$ there are at most ϵt sets $V_j \in \{V_1, \ldots, V_t\}$ such that (U_i, V_j) is not ϵ-regular and for all $V_i \in \{V_1, \ldots, V_t\}$ there are at most ϵt sets $U_j \in \{U_1, \ldots, U_t\}$ such that (V_i, U_j) is not ϵ-regular.

In addition, we shall use the following version of the Blow-up Lemma [12].

Lemma 7.9 (Blow-up Lemma). Given $\delta > 0$, $\Delta > 0$ and $\rho > 0$ there exist $\epsilon > 0$ and $\eta > 0$ such that the following holds. Let $S = (W_1, W_2)$ be an (ϵ, δ)-super-regular pair with $|W_1| = n_1$ and $|W_2| = n_2$. If T is a A_1, A_2-bigraph with maximum degree $\Delta(T) < \Delta$ and T is embeddable into the complete bipartite graph K_{n_1, n_2} then it is also embeddable into S. Moreover, for all n_1, subsets $A'_i \subseteq A_i$ and functions $f_i : A'_i \rightarrow (\varphi)$, $i = 1, 2$, T can be embedded into S so that the image of each $a_i \in A'_i$ is in the set $f_i(a_i)$.

8 Random case

In this section, we will show that if the graph is not α-splittable for sufficiently small α then it contains a spanning ladder. The proof is based on the Regularity Lemma of Szemerédi and the Blow-up Lemma of Komlos, Sárközy, and Szemerédi.

Lemma 8.1. Let k be a positive integer and suppose $\gamma_1 \geq \frac{1}{200k}$. There exists an $N_2(k)$ so that if G is not α-splittable for $\alpha = \left(\frac{\gamma_1}{551}\right)^2$, and $n \geq N_2(k)$ then G contains a spanning ladder.

Proof. Let $0 < d_0 \leq \frac{\alpha\gamma_12^2}{8}$, $\delta_1 \leq \frac{1}{3000}d_0^2$, $\delta_2 \leq \frac{1}{2}\delta_1$, $\delta_3 \leq \frac{1}{2}\delta_2$, $\delta_4 \leq \frac{1}{2}\delta_3$, $\delta \leq \frac{1}{2}\delta_4$, $\Delta = 4$ and $\rho = \frac{\epsilon}{\Delta^2}$. For these choices of δ, Δ and ρ choose $\epsilon < \delta^2$ and η to satisfy the conclusion of Lemma 7.9. Now let $\epsilon_5 \leq \left(\frac{\epsilon}{\Delta}\right)^4$, $\epsilon_4 \leq \frac{1}{2}\epsilon_5$, $\epsilon_3 \leq \frac{1}{2}\epsilon_4$, $\epsilon_2 \leq \frac{1}{2}\epsilon_3$, and $\epsilon_1 \leq \frac{1}{2}\epsilon_2$. So

$$0 < \epsilon_1 < \epsilon_2 < \epsilon_3 < \epsilon_4 < \epsilon_5 \ll \epsilon \ll \delta < \delta_4 < \delta_3 < \delta_2 < \delta_1 \ll d_0 \ll \alpha.$$

Let $N_2(k) = \max\{N(\epsilon_1), \frac{4M(\epsilon_1)}{n}\}$, where $M(\epsilon_1)$ and $N(\epsilon_1)$ are the values obtained from Corollary 7.8. Apply Corollary 7.8 to G with ϵ_1 to obtain a partition $\{U_0, U_1, \ldots, U_t\} \cup \{V_0, V_1, \ldots, V_t\}$ satisfying (i-iii). For all $i, j \in [t]$, let $\ell := |U_i| = |V_j|$ and note that

$$(1 - \epsilon_1)^\frac{n}{\ell} \leq \ell \leq \frac{n}{\ell}.$$

Consider the cluster graph G with $V(G) = \{U_1, \ldots, U_t\} \cup \{V_1, \ldots, V_t\}$ and two clusters W, W' joined by an edge when the pair (W, W') is ϵ_1-regular and $d(W, W') \geq \delta_1$. Then G is a bipartite graph with bipartition $\{U, V\}$, where $U = \{U_1, \ldots, U_t\}$ and $V = \{V_1, \ldots, V_t\}$. For a cluster Z, let $I(Z) = \{W : (Z, W) \text{ is irregular}\}$ and $\overline{I}(Z) = \{W : d(Z, W) < \delta_1\}$.

Claim 8.2. G contains a path P on $2q$ vertices with $q \geq (1 - 2\delta_1 - 4\epsilon_1)t$.

13
Proof. First note that
\begin{equation}
\delta_U \geq (\gamma_1 - \delta_1 - 2\epsilon_1)t \quad \text{and} \quad \delta_V \geq (\gamma_2 - \delta_1 - 2\epsilon_1)t. \tag{13}
\end{equation}

Otherwise there exists \(Z \in V(G) \) with \(\deg_G(Z) < (\gamma_1 - \delta_1 - 2\epsilon_1)t \), where \(i = 1 \) if \(Z \in U \) and \(i = 2 \) if \(Z \in V \). Then we have the following contradiction:
\[
\gamma_i n\ell \leq e_G(Z) \leq \sum_{W \in N_G(Z)} e(Z, W) + \sum_{W \in I(Z)} e(Z, W) + e(Z, V_0) < (\gamma_i - \delta_1 - 2\epsilon_1)t\ell^2 + \delta_1 t\ell^2 + \epsilon_1 t\ell^2 + \epsilon_1 n\ell \leq \gamma_i n\ell.
\]

Now suppose that \(G \) is disconnected, we will obtain a contradiction by showing that this implies that \(G \) is \(\alpha \)-splittable. Let \(A \) and \(B \) be distinct components of \(G \) and let \(X = U \cap \bigcup A \) and \(Y = V \cap \bigcup B \). Using \(e_G(X, Y) = 0 \), we have
\[
e_G(X, Y) \leq \delta_1 |X||Y| + \epsilon_1 t\ell |X| \leq \delta_1 |X||Y| + \epsilon_1 3|Y||X| \leq (\delta_1 + 3\epsilon_1)|X||Y| \leq \alpha(\gamma_1 - \alpha)(\gamma_2 - \alpha).
\]

Thus Definition 5.1(ii) holds. By (13) we have
\[
|X| \geq (\gamma_2 - \delta_1 - 2\epsilon_1)t\ell \geq (\gamma_2 - \delta_1 - 2\epsilon_1)(1 - \epsilon_1)n \geq (\gamma_2 - \delta_1 - 3\epsilon_1)n \geq (\gamma_2 - \alpha)n \quad \text{and}
\]
\[
|Y| \geq (\gamma_1 - \delta_1 - 2\epsilon_1)t\ell \geq (\gamma_1 - \delta_1 - 2\epsilon_1)(1 - \epsilon_1)n \geq (\gamma_1 - \delta_1 - 3\epsilon_1)n \geq (\gamma_1 - \alpha)n.
\]

Thus Definition 5.1(i) holds for some \(X' \subseteq X \), \(Y' \subseteq Y \) and \((X', Y')\) is an \(\alpha \)-splitting of \(G \).

Since \(G \) is connected, the claim follows immediately from (13) and Lemma 2.1. \(\square \)

Choose the notation so that \(\mathcal{P} = U_1 V_1 \ldots U_q V_q \). Add all clusters which are not in \(\mathcal{P} \) to the exceptional class \(U_0 \cup V_0 \). As \(\epsilon_1 \ll \delta_1 \), the exceptional class may now be much larger:
\[
|U_0| = |V_0| \leq 3\delta_1 n.
\]

Our next task is to reassign the vertices from the exceptional class to \(\mathcal{P} \). Since we will need to do this twice, we state the procedure in general terms. Let \(\{X_0, X_1, \ldots, X_q\} \cup \{Y_0, Y_1, \ldots, Y_q\} \) be the current partition, where \(\bigcup_{i=0}^q X_i = U \) and \(\bigcup_{i=0}^q Y_i = V \). Suppose that \((X_i, Y_i)\) and \((X_{i+1}, Y_i)\) are \(\epsilon' \)-regular pairs of density at least \(\delta' \). Recall that \((1 - \epsilon_1)\frac{n}{\ell} \leq \ell \leq \frac{n}{\sigma^2}\) was the common size of the non-exceptional clusters in the initial \(\epsilon_1 \)-regular partition. The procedure takes two parameters \(\sigma \) and \(\tau \) where \(\sigma^2 n \) is an upper bound on the size of the exceptional sets and \(2\tau \ell \) is a minimum degree condition which a vertex must meet in order to be reassigned to a cluster. We arbitrarily group the vertices from \(X_0 \cup Y_0 \) into pairs \((u, v)\) and distribute them one pair at a time. In addition to reassigning vertices from \(X_0 \cup Y_0 \) we may move a vertex from one cluster to another. This process will be completed after \(s := |X_0| = |Y_0| \leq \sigma^2 n \) steps.

We use the following notation. For a cluster \(Z \) let \(Z^r \) denote \(Z \) after the \(r \)-th step of the reassignment. So \(Z = Z^0 \). Let \(O(Z^r) := Z^0 \cap Z^r \) denote the original vertices of \(Z^0 \) that remain after the \(r \)-th step, \(T(Z^r) := Z^r \setminus Z^0 \) denote the vertices that have been moved to \(Z \) during the first \(r \) steps, and \(F(Z^r) := Z^0 \setminus Z^r \) denote the vertices that have been moved from \(Z \) during the first \(r \) steps. We say that a cluster \(Z^r \) is full when \(|T(Z^r)| = \sigma \ell \).

Procedure: Reassign

For \(r = 1, \ldots, s \) reassign the \(r \)-th pair \((u, v)\) as follows:
we have conditions are satisfied:

\(\epsilon \) density at least \(V \)

Lemma 8.3 (iv)

(ii) \((i) \)

Reassign \(u \) to \(U_j^{r-1} \), \(v \) to \(V_i^{r-1} \), and if \(i \neq j \) then pick \(u' \in O(U_j^{r-1}) \) with \(\deg(u', V_i^0) \geq 2 \tau \ell \) and reassign \(u' \) to \(U_j^{r-1} \).

Lemma 8.3 (Reassigning Lemma). Suppose \(\{X_0, X_1, \ldots, X_q\} \cup \{Y_0, Y_1, \ldots, Y_q\} \) is a partition of \(V(G) \) in which the pairs \((X_i, Y_i) \) and \((X_{j+1}, Y_j) \) for \(i \in [q] \) and \(j \in [q-1] \), are \(\epsilon' \)-regular with density at least \(\delta' \), where \(2\epsilon' \leq \delta' \), \((1-d_0) \ell \leq |X_i|, |Y_i| \leq \ell \) and \(s = |X_0| = |Y_0| \leq \sigma^2 n \). If \(\epsilon_1 \leq \epsilon' \leq \sigma \leq \frac{1}{4} \tau \leq \frac{1}{4}d_0 \), then REASSIGN distributes all vertices from \(X_0 \cup Y_0 \) so that the following conditions are satisfied:

(i) If \(u \in T(X_i^\ell) \) then \(\deg(u, O(Y_i^{s})) \geq \tau \ell \) and if \(v \in T(Y_i^\ell) \) then \(\deg(v, O(X_i^s)) \geq \tau \ell \);

(ii) \(|X_i^\ell| - |Y_i^s| = |X_i^0| - |Y_i^0| \);

(iii) \(|T(X_i^\ell)|, |T(Y_i^s)| \leq \sigma \ell \) and \(|F(X_i^s)|, |F(Y_i^s)| \leq \sigma \ell \);

(iv) the pairs \((O(X_i^s), O(Y_i^s)) \) and \((O(X_{j+1}^s), O(Y_j^s)) \) are \(2\epsilon' \)-regular with density at least \(\frac{1}{2} \delta' \).

Proof. Suppose that \(r \) pairs have been distributed and consider the \((r+1) \)-th pair \((u,v)\). Let \(N'(u) = \{i : \deg(u, Y_i^0) \geq 2 \tau \ell \} \) and \(N'(v) = \{i : \deg(v, X_i^0) \geq 2 \tau \ell \} \).

Since

\[\gamma_2 n \leq \deg(v) \leq |N'(v)| \ell + 2 \tau \ell t + \sigma^2 n \leq |N'(v)| \frac{n}{t} + 2 \tau n + \sigma^2 n, \]

we have

\[|N'(v)| \geq (\gamma_2 - 2 \tau - \sigma^2)t \geq (\gamma_2 - 3 \tau)t. \]
In the same way we obtain

$$|N'(u)| \geq (\gamma_1 - 3\tau)t.$$

Now let

$$X = \bigcup_{i \in N'(u)} X_i^0 \subseteq U \text{ and } Y = \bigcup_{i \in N'(v)} Y_i^0 \subseteq V.$$

Then we have

$$|Y| \geq |N'(v)|(1 - d_0)(1 - \epsilon_1)n \geq (\gamma_2 - 3\tau)(1 - d_0)(1 - \epsilon_1)n \geq (\gamma_2 - 5d_0)n \geq (\gamma_2 - \alpha)n.$$

Similarly

$$|X| \geq (\gamma_1 - \alpha)n.$$

Consequently, as the graph is not α-splittable, we have

$$e(X, Y) > \alpha|X||Y| \geq \alpha(\gamma_1 - \alpha)(\gamma_2 - \alpha)n^2 \geq \alpha\gamma_1\gamma_2n^2/2. \quad (14)$$

Suppose that we are unable to distribute the pair (u, v). We will derive a contradiction by counting edges incident with full clusters and edges in pairs (U_i^τ, V_j^τ) with $e(U_i^\tau, V_j^\tau) < 3\tau\ell^2$. At most $s - 1 \leq \sigma^2n$ pairs of exceptional vertices have been distributed, and each time a pair is distributed there are at most two indices i such that $|T(X_i^\tau)|$ or $|T(Y_i^\tau)|$ increases. Upon distribution, $|T(X_i^\tau)|$ or $|T(Y_i^\tau)|$ can increase by at most one. Thus there are at most

$$2\sigma^2n \over \sigma \ell = 2\sigma n \over \ell$$

pairs (U_i, V_i) such that either U_i or V_i is full. The total number of edges of G which are incident with vertices in these clusters is at most

$$4\sigma n \ell n = 4\sigma n^2.$$

There are at most $3\tau n^2$ edges of G in pairs (X_i^0, Y_j^0) with $e(X_i^0, Y_j^0) < 3\tau\ell^2$. Then, since

$$(3\tau + 4\sigma)n^2 \leq 4\tau n^2 \leq \alpha\gamma_1\gamma_2n^2/2 < e(X, Y)$$

contradicts (14), there must exist $i \in N'(v)$ and $j \in N'(u)$ such that none of $X_i^\tau, Y_i^\tau, X_j^\tau, Y_j^\tau$ is full and $e(X_i^0, Y_j^0) \geq 3\tau\ell^2$. Then since $e(O(X_i^\tau), Y_j^0) \geq (3\tau - \sigma)\ell^2$ there is $u' \in O(X_i^\tau)$ with $
 degrade(u', Y_j^0) \geq 2\tau$. Thus the procedure distributes (u, v).

Conditions (ii) and (iii) hold by design: for (iii) note that a vertex is only reassigned from a cluster if another vertex is reassigned to that cluster. Condition (iv) follows immediately from Lemma 7.4. Finally, condition (i) is satisfied since for every $u \in T(U_i^\tau)$ and $v \in T(V_i^\tau)$ we have

$$\deg(u, O(V_i^\tau)) \geq (2\tau - \sigma)\ell \geq \tau\ell \quad \text{and} \quad \deg(v, O(U_i^\tau)) \geq (2\tau - \sigma)\ell \geq \tau\ell.$$

□
such that some of its neighbors. So now, in a similar way, we choose \(u \). So by Proposition 7.3 we can find vertices \(v \) all but at most \(\epsilon_2 \) of \(u \). Then \(O(U_i^1) = O(X_i^0) \), etc. By Lemma 8.3, each \(O(U_i^1), O(V_i^1) \) is \(\epsilon_2 \)-regular with density at least \(\epsilon_2 \) and \(\ell \geq |O(U_i^1)| = |O(V_i^1)| \geq (1-\epsilon_2)\ell \).

While \((U_i^1, V_i^1) \) may not be \(\epsilon_2 \)-regular, the exceptional parts \(T(U_i^1) \) and \(T(V_i^1) \) satisfy:

\[
\forall u \in T(U_i^1), \forall v \in T(V_i^1), \deg(u, O(V_i^1)), \deg(v, O(U_i^1)) \geq d_0 \ell > \sqrt{3\delta_1} \ell \geq |T(U_i^1)|, |T(V_i^1)|.
\]

Our next goal is to find a small ladder in each pair \((U_i, V_i)\) which will contain all of the exceptional vertices \(T(U_i^1) \) and \(T(V_i^1) \). Precisely, we will prove the following.

Claim 8.4. For each \(i \in [r] \) there exists a ladder \(L_i \subseteq U_i^1 \cup V_i^1 \) such that:

(i) \(T(U_i^1) \cup T(V_i^1) \subseteq V(L_i) \).

(ii) \(|V(L_i)| \leq 16\sqrt{3\delta_1} \ell \).

(iii) Each \(w \in \text{ext}(L_i) \) satisfies \(\deg(w, (O(V_i^1) \cup O(U_i^1)) \setminus L_i) \geq \frac{1}{2} \epsilon_2 \ell \).

Proof. Let \(w_1, w_2, \ldots, w_s \) be an ordering of \(T(U_i^1) \cup T(V_i^1) \). Then \(s \leq 2\sqrt{3\delta_1} \ell \leq \frac{1}{12} d_0 \ell \). Suppose that we have constructed a ladder \(L \subseteq U_i^1 \cup V_i^1 \) on \(8r \) vertices \((1 \leq r < s)\) that contains exactly the first \(r \) vertices of \(T(U_i^1) \cup T(V_i^1) \), satisfies (iii), and has first rung \(u'v' \) and last rung \(u''v'' \). Without loss of generality, assume that \(w_{r+1} \in T(U_i^1) \).

We will first show how to extend \(L \) to \(L' \) by attaching a 3-ladder \(aba'b'w_{r+1}v \), with \(a, a' \in O(U_i^1) \setminus L \) and \(b, b', v \in O(V_i^1) \setminus L \), to the end of \(L \) so that \(w_{r+1} \) and \(v \) satisfy (iii). By Lemma 7.2, all but at most \(\epsilon_2 \ell \) vertices \(v \in O(V_i^1) \) satisfy \(\deg(v, O(V_i^1) \setminus V(L)) \geq \frac{1}{2} \delta_2 \ell + 4 \). Choose such a vertex \(v \in N(w_{r+1}) \setminus V(L) \). Each \(x \in \{u'', v'', w_{r+1}, v\} \) has at least \(\frac{1}{2} \delta_2 \ell \) neighbors in \((O(V_i^1) \cup O(U_i^1)) \setminus L \).

So by Proposition 7.3 we can find vertices \(a, b, a', b' \in (O(V_i^1) \cup O(U_i^1)) \setminus L \) such that \(a \sim v'', b \sim u'', a' \sim v, b' \sim w_{r+1} \) and \(G[a, b, a', b'] = C_4 \), which completes the extension.

In extending \(L \) to \(L' \) we may have violated condition (iii) for the first rung \(u'v' \) by using up some of its neighbors. So now, in a similar way, we choose \(a'' \in O(U_i^1) \setminus L' \) and \(b'' \in O(V_i^1) \setminus L' \), such that \(u' \sim b'' \sim a'' \sim v' \) and \(\deg(a'', O(V_i^1) \setminus L') \), \(\deg(b'', O(U_i^1) \setminus L') \geq \frac{1}{2} \delta_2 \ell + 1 \). We then add \(a''b'' \) to \(L' \) as a first rung to obtain \(L'' \) satisfying (iii). Continuing in this fashion we obtain the desired ladder \(L' \) satisfying (i-iii).
Finally, let (T, δ). So by Lemma 7.5, since $\deg(w, U^2 \cup V^2) \leq (\delta - \epsilon_3)|V^2|$ is contained in $Q_i \cup R_i$. This is possible by Lemma 7.2.

Move the vertices in $Q_i \cup R_i$ to new exceptional sets to obtain the partition

$$U^3_0 := \bigcup_{i=1}^q Q_i, \quad V^3_0 := \bigcup_{i=1}^q R_i, \quad U^3_i := U^2_i \setminus Q_i, \quad \text{and} \quad V^3_i := V^2_i \setminus R_i.$$

Then $|U^3_0| = |V^3_0| \leq \epsilon_3 n$. By Lemma 7.4 the pairs (U^3_i, V^3_i) are (ϵ_4, δ_i)-super-regular for $i \in [q]$. The pairs (U^3_{j+1}, V^3_{j+1}) may not be super-regular, but they are (ϵ_4, δ)-regular with density at least δ_4.

Applying Lemma 8.3 to the partition $(U^3_0, U^3_1, \ldots, U^3_q) \cup (V^3_0, V^3_1, \ldots, V^3_q)$ with $\sigma = \sqrt{\epsilon_3}$ and $\tau = \delta_4$, we get a new partition $(U^3_0, U^3_1, \ldots, U^3_q) \cup (V^3_1, \ldots, V^3_q)$. Note that the pairs $(O(U^3_i), O(V^3_i))$ are $(\frac{1}{2} \epsilon_5, 2 \delta)$-super-regular and thus

$$(1 - d_0) \ell \leq (1 - 9 \sqrt{3 \delta_1} - \epsilon_3 - \sqrt{\epsilon_3}) \ell \leq |O(U^3_i)|, |O(V^3_i)| \leq \ell \quad \text{and}$$

$$|T(U^3_i)|, |T(V^3_i)| \leq \sqrt{\epsilon_3} \ell \leq \frac{1}{2} \sqrt{\epsilon_3} \ell \leq \sqrt{\epsilon_3} |O(U^3_i)|, \sqrt{\epsilon_3} |O(V^3_i)|.$$

So by Lemma 7.5, since $\deg(w, O(V^3_i)) \geq \delta_4|O(V^3_i)|$ and $\deg(w', O(U^3_i)) \geq \delta_4|O(U^3_i)|$, for all $w' \in T(U^3_i)$ and $w' \in T(V^3_i)$, the pairs (U^3_i, V^3_i) are (ϵ, δ)-super-regular (with room to spare). Similarly, each pair (U^3_{j+1}, V^3_{j+1}) is ϵ-regular with density at least δ. Also $|U^3_i| = |V^3_i|$, except that $|V^3_i| = |U^3_i| + 1, |U^3_q| = |V^3_q| + 1$.

Using Lemma 7.2, for $i \in [q - 1]$, choose $v_i \in V^4_i$ such that $|A_{i+1}| \geq \frac{1}{2} \delta \ell$, where $A_{i+1} := U^4_{i+1} \setminus N(v_i)$. Similarly, choose $u_{i+1} \in A_{i+1}$ such that $|D_i| \geq \frac{1}{2} \delta \ell$, where $D_i := V^4_i \setminus N(u_{i+1})$. Set $P := \{v_i, u_{i+1} : i \in [q - 1]\}, U^5_i := U^4_i \setminus P$, and $V^5_i := V^4_i \setminus P$. Then (using the spared room) (U^5_i, V^5_i) is still an (ϵ, δ)-super-regular pair. Now set $B_{i+1} := V^5_i \setminus N(u_{i+1})$ and $C_i := U^5_i \setminus N(v_i)$. Let x_i, y_i be the first rung of L' and let w_i, z_i be the last rung of L', where $x_i, w_i \in U$ and $y_i, z_i \in V$. Finally let $X_i := U^5_i \cap N(y_i), Y_i := V^5_i \cap N(x_i), W_i := U^5_i \cap N(z_i)$, and $Z_i := V^5_i \cap N(w_i)$. Note that each of X_i, Y_i, W_i, and Z_i has size at least $\frac{1}{2} \delta \ell = \frac{1}{2} \ell$.

We now apply Lemma 7.9 to each pair (U^5_i, V^5_i) to find a spanning ladder M' whose first rung is contained in $A_i \times B_i, \epsilon_2$ whose second rung is contained in $X_i \times Y_i, \epsilon_2$ whose third rung is contained in $W_i \times Z_i$, and whose last rung is contained in $C_i \times D_i$. This is possible since $\eta \ell \geq 4$. Clearly we can insert L' between the second and third rungs of M' to obtain a ladder L' spanning $U^4_i \cup V^4_i$. Finally, $L'^4v_1u_2L'^2 \ldots v_{r-1}u_rL'^r$ is a spanning ladder of G.

\begin{proof}{9} Proof of Amar’s Conjecture

Theorem 1.8 follows immediately from Lemmas 4.1, 6.1, 8.1 with $N_0(k) = \max\{N_1(k), N_2(k)\}$.

Now we prove Theorem 1.9.

\end{proof}{9}

18
Let \(N_0(1) \) be the value given when \(k = 1 \) in Theorem 1.8 and set \(C := N_0(1) \). Suppose \(G \) is a balanced \(U, V \)-bigraph on \(2n \) vertices with \(\delta_U + \delta_V \geq n + C \). We may assume without loss of generality that \(\delta_U = \delta(G) =: \delta \). We may assume \(\delta < \frac{n}{29} + 1 \), otherwise we would have a spanning ladder by Theorem 1.8 since the choice of \(C \) implies that \(n \geq N_0(1) \).

Let \(S = \{ x \in U : \deg(x) \leq \frac{9n}{10} \} \) and \(S' \subseteq S \) be a maximal subset such that \(|N(S')| < 3|S'| \). Let \(\bar{s} := |S| - |S'| \), then \(G[(S \setminus S') \cup (V \setminus N(S'))] \) contains a set of \(\bar{s} \) disjoint claws \(M = \{ a_r b_r c_r d_r : r \in [\bar{s}], a_r \in S \setminus S', b_r, c_r, d_r \in V \setminus N(S') \} \). We have the following bound on the cardinality of \(S \),

\[
(n - \delta + C)n \leq |E(G)| \leq \frac{9n}{10}|S| + n(n - |S|) \leq 10|S| - 10C.
\]

(15)

Note that for all \(v_1, v_2 \in V \cap V(M) \) we have

\[
|(N(v_1) \cap N(v_2)) \cap (U \setminus S)| \geq 2(n - \delta + C) - n - |S| > \frac{47}{50}n \geq 2\bar{s}.
\]

(16)

Thus by (16) there exists a set of 3-ladders

\[
\Lambda(M) = \{ x, a_r y_r b_r c_r d_r : r \in [\bar{s}], a_r, b_r, c_r, d_r \in M, x_r, y_r \in U \setminus S \}.
\]

Note that \(\text{ext}(L) \subseteq V(G) \setminus S \) for all \(L \in \Lambda(M) \). Let \(R = \bigcup_{L \in \Lambda(M)} V(L) \). For all \(v' \in V \setminus N(S') \), we have \(\deg(v') \geq n - \delta + C \), thus

\[
|S'| \leq \delta - C.
\]

(17)

Now we show that \(G \) contains a ladder that spans \(S' \). Let \(T = \{ x \in U : \deg(x) < n - 29\delta \} \). Then

\[
(n - \delta + C)n \leq |E(G)| < (n - 29\delta)|T| + n(n - |T|) \leq \frac{n}{29}.
\]

Let \(X' \) be any \((30\delta - |S'|)\)-subset of \(U \setminus (R \cup S \cup T) \) and \(U' = S' \cup X' \). Similarly, let \(Y' \) be any \((30\delta - |N(S')|)\)-subset of \(V \setminus (N(S') \cup V(M)) \) and \(V' = N(S') \cup Y' \). Let \(H := G[U' \cup V'] \). Then every vertex in \(X' \) is non adjacent to at most \(29\delta \) vertices of \(V \) and so \(\delta_{V'} := \delta_{V'}(H) \geq \delta \). Similarly, \(\delta_{V'} := \delta_{V'}(H) \geq 29\delta + C \). Let \(m = 30\delta \) and note that \(\delta_{V'} + \delta_{V'} \geq m + C, \delta(H) \geq \frac{n}{30} \).
and by the choice of C, $m \geq N_0(1)$. Thus H contains a spanning ladder $L = u_1v_1 \ldots u_{30\delta}v_{30\delta}$ by Lemmas 6.1 and 8.1. Since $|N(S')| < 3|S'|$ we have $|S' \cup N(S')| < 4\delta$ by (17). Thus there exists rungs $u_iv_i, u_{i+1}v_{i+1} \in E(L)$ with $2 \leq i \leq 30\delta - 2$ such that $u_i, v_i, u_{i+1}, v_{i+1} \in V(H) \setminus (S' \cup N(S'))$. Let $L_1 = u_1v_1 \ldots u_iv_i$ and $L_2 = u_{i+1}v_{i+1} \ldots u_{30\delta}v_{30\delta}$. We will specify L_1 as the initial ladder and L_2 as the terminal ladder. Let $\Lambda := \Lambda(M) \cup \{L_1, L_2\}$ and let $I = I(\Lambda) = \bigcup_{L \in \Lambda} \mathring{L}$. Set $q' := 0$, $s' := \bar{s} + 2 = |\Lambda|$ and $t' := 30\delta + 3\bar{s}$. Note that for all $z \in V(G) \setminus I$ we have,

$$\deg(z) \geq \frac{9n}{10} \geq \frac{3n + 100\delta}{4} + 1 \geq \frac{3n + 3s' + t' + 4q'}{4} + 1.$$

So we may apply Lemma 2.3 to G to obtain a spanning ladder which starts with the first rung of L_1 and ends with the last rung of L_2.

Finally, we prove Theorem 1.10.

Proof. Let C be the constant from Theorem 1.9, let $N_0(1) < N_0(2) < \cdots < N_0(C - 1)$ be the values given by Theorem 1.8, and let $N_0 = N_0(C - 1)$. Let G be a balanced U, V-bigraph on $2n$ vertices with $n \geq N_0$ which satisfies $\delta_U + \delta_V \geq n + \operatorname{comp}(H)$. By Theorem 1.8 and Theorem 1.9, we have $H \subseteq G$.

References

